-
激光外差干涉测量技术是微振动探测的重要手段, 随着微纳应用的拓展, 人们对精密测量系统的相位检测灵敏度提出了更高的要求. 传统提高测量灵敏度的方法有优化外差干涉系统方案、改进相位重建算法和降低关键器件噪声等. 本文提出了一种多光束混合干涉的相位增强方法, 经过理论推导和实验验证得到如下近似条件: 校正光与信号光的初相位相差π rad情况下, 两光束的功率越接近, 系统对目标的弱振动振幅响应越大. 实验设计的两光束功率相差1%时, 观察到了最大146 倍的增强效果, 该方法在微振动物体高灵敏度测量上具有较大的应用价值, 在现有器件指标和相位解调算法不变的基础上可大幅提高外差干涉测量系统的探测能力.Laser Doppler vibrometer can measure the displacement, velocity, acceleration and other parameters of vibration target. It has the characteristics of non-contact, high precision and long distance. So, it has a great advantage for the vibration measurement in a special working environment, where the target is light and thin, hard to contact, hard to approach. Laser heterodyne interferometry is an important means of detecting the micro vibration. With the development of micro vibration application, the sensitivity of phase measurement is highly required. Traditionally, there are several ways of improving the measurement sensitivity, such as optimizing the heterodyne interference scheme, improving the phase reconstruction algorithm and reducing the noise of key devices and so on. However, based on the analysis of the influence of stray light in the system, it is found that the controllable multi-beam interference can greatly improve the detection capability of the system. Therefore, a phase enhancement technique of multi-beam hybrid interference is proposed to meet the needs of high sensitivity detection of micro vibration. In this paper the physical mechanism and boundary conditions of phase enhancement are investigated in detail, and the quantitative relationship between the boundary conditions and phase enhancement is also analyzed thereby providing a technical reference for the enhancement detection of micro vibration targets. Through the numerical simulation and experimental verification, the following boundary conditions are obtained: the initial phase difference between the correction light and the signal light is π rad and the closer the power values of the two beams, the greater the enhancement effect of the demodulation phase is. The power difference between the two beams designed in the experiment is 1%, which means that detection capability is enhanced by 146 times. It has great application value in the high sensitivity measurement of micro vibration objects. This technology can also enhance the detection capability of heterodyne interference measurement system without changing the existing device index or phase demodulation algorithm.
-
Keywords:
- heterodyne interferometry /
- Laser Doppler effect /
- phase enhancement /
- hybrid interferometry
[1] Castellini P 2006 Mech. Syst. Signal Pr. 20 1265Google Scholar
[2] George W.K., Lumley J.L 1973 Fluid Mech. 60 321Google Scholar
[3] Sriram, S. Hanagud, J. I. 1992 Modal Anal. 7 169
[4] Baker J R, Laming R I, Wilmshurst T H 1990 Opt. Laser Technol. 22 4 241
[5] Brunet A R, Turon P, Lacoste F. A 1985 Proc. SPIE Optics in Engineering Measurement 599 391
[6] Kong X X, Xiang L B, Zhang W X, Wu Z, Zhang D D 2019 Proc. SPIE Security Defence 111600 1
[7] Yuichi F, Daisuke, Tomohiro K, ToyohikoY 2010 Opt. Lett. 35 101548
[8] 贺寅竹, 赵世杰, 尉昊赟, 李岩 2017 66 060601Google Scholar
He Y Z, Zhao S J, Wei H Y, Li Y 2017 Acta Phys. Sin. 66 060601Google Scholar
[9] Jackson D A, Posada-Roman J E, Garcia-Souto J A 2015 Ele. Lett. 51 1100Google Scholar
[10] Aranchuk V, Aranchuk I, Carpenter B, Hickey C 2019 OSA Laser Con. 4 1
[11] Li Y L, et al. 2018 OSA CLEO 5 1
[12] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐 2018 67 064204Google Scholar
Du J, Yang N, Li J L, Qu Y C, Li S M, Ding Y H, Li R 2018 Acta Phys. Sin. 67 064204Google Scholar
[13] 刘亚睿 2016 硕士学位论文 (杭州: 中国计量大学)
Liu Y R 2016 M. S. Thesis (Hangzhou: China Jiliang University) (in Chinese)
[14] 党文佳 2015 博士学位论文 (西安: 西安电子科技大学)
Dang W J 2015 Ph. D. Dissertation (Xian: Xidian Univeristy) (in Chinese)
[15] Ken Y, Fumiya N 2017 Micro. opt. Conference 1 48
[16] 赵金龙 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhao J L 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[17] Hossam K, Dongkyu K, Joonsik N, Kyihwan P 2016 Measurement 94 883Google Scholar
[18] 伍洲, 张文喜, 相里斌, 李杨, 孔新新 2018 67 020601Google Scholar
Wu Z, Zhang W X, Xiang L B, Li Y, Kong X X 2018 Acta Phys. Sin. 67 020601Google Scholar
[19] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 66 234208Google Scholar
Yan C H, Wang T F, Zhang H Y, Lv T, Wu S S 2017 Acta Phys. Sin. 66 234208Google Scholar
[20] Paul K, Flügge J, Weichert C 2012 Meas. Sci. Technol. 25 1
[21] Cheng Z G 2006 Appl. Opt. 45 2246Google Scholar
[22] Lawall J 2000 Rev. of Sci. Instr. 71 2669Google Scholar
[23] Hu P C. 2017 Opt. Exp. 25 3605Google Scholar
[24] Yaravoi L, Siegmund G 2004 Meas. Sci. Technol. 15 2150Google Scholar
-
-
[1] Castellini P 2006 Mech. Syst. Signal Pr. 20 1265Google Scholar
[2] George W.K., Lumley J.L 1973 Fluid Mech. 60 321Google Scholar
[3] Sriram, S. Hanagud, J. I. 1992 Modal Anal. 7 169
[4] Baker J R, Laming R I, Wilmshurst T H 1990 Opt. Laser Technol. 22 4 241
[5] Brunet A R, Turon P, Lacoste F. A 1985 Proc. SPIE Optics in Engineering Measurement 599 391
[6] Kong X X, Xiang L B, Zhang W X, Wu Z, Zhang D D 2019 Proc. SPIE Security Defence 111600 1
[7] Yuichi F, Daisuke, Tomohiro K, ToyohikoY 2010 Opt. Lett. 35 101548
[8] 贺寅竹, 赵世杰, 尉昊赟, 李岩 2017 66 060601Google Scholar
He Y Z, Zhao S J, Wei H Y, Li Y 2017 Acta Phys. Sin. 66 060601Google Scholar
[9] Jackson D A, Posada-Roman J E, Garcia-Souto J A 2015 Ele. Lett. 51 1100Google Scholar
[10] Aranchuk V, Aranchuk I, Carpenter B, Hickey C 2019 OSA Laser Con. 4 1
[11] Li Y L, et al. 2018 OSA CLEO 5 1
[12] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐 2018 67 064204Google Scholar
Du J, Yang N, Li J L, Qu Y C, Li S M, Ding Y H, Li R 2018 Acta Phys. Sin. 67 064204Google Scholar
[13] 刘亚睿 2016 硕士学位论文 (杭州: 中国计量大学)
Liu Y R 2016 M. S. Thesis (Hangzhou: China Jiliang University) (in Chinese)
[14] 党文佳 2015 博士学位论文 (西安: 西安电子科技大学)
Dang W J 2015 Ph. D. Dissertation (Xian: Xidian Univeristy) (in Chinese)
[15] Ken Y, Fumiya N 2017 Micro. opt. Conference 1 48
[16] 赵金龙 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhao J L 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[17] Hossam K, Dongkyu K, Joonsik N, Kyihwan P 2016 Measurement 94 883Google Scholar
[18] 伍洲, 张文喜, 相里斌, 李杨, 孔新新 2018 67 020601Google Scholar
Wu Z, Zhang W X, Xiang L B, Li Y, Kong X X 2018 Acta Phys. Sin. 67 020601Google Scholar
[19] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 66 234208Google Scholar
Yan C H, Wang T F, Zhang H Y, Lv T, Wu S S 2017 Acta Phys. Sin. 66 234208Google Scholar
[20] Paul K, Flügge J, Weichert C 2012 Meas. Sci. Technol. 25 1
[21] Cheng Z G 2006 Appl. Opt. 45 2246Google Scholar
[22] Lawall J 2000 Rev. of Sci. Instr. 71 2669Google Scholar
[23] Hu P C. 2017 Opt. Exp. 25 3605Google Scholar
[24] Yaravoi L, Siegmund G 2004 Meas. Sci. Technol. 15 2150Google Scholar
计量
- 文章访问数: 6425
- PDF下载量: 116
- 被引次数: 0