搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间尺度上非迁移Birkhoff系统的Mei对称性定理

张毅

引用本文:
Citation:

时间尺度上非迁移Birkhoff系统的Mei对称性定理

张毅

Mei’s symmetry theorems for non-migrated Birkhoffian systems on a time scale

Zhang Yi
PDF
HTML
导出引用
  • 研究并证明时间尺度上非迁移Birkhoff系统的Mei对称性定理. 首先, 建立任意时间尺度上Pfaff-Birkhoff原理和广义Pfaff-Birkhoff原理, 由此导出时间尺度上非迁移Birkhoff系统(包括自由Birkhoff系统、广义Birkhoff系统和约束Birkhoff系统)的动力学方程. 其次, 基于非迁移Birkhoff方程中的动力学函数经历变换后仍满足原方程的不变性, 给出了时间尺度上Mei对称性的定义, 导出了相应的判据方程. 再次, 建立并证明了时间尺度上非迁移Birkhoff系统的Mei对称性定理, 得到了时间尺度上Birkhoff系统的Mei守恒量. 并通过3个算例说明了结果的应用.
    The Mei symmetry and its corresponding conserved quantities for non-migrated Birkhoffian systems on a time scale are proposed and studied. Firstly, the dynamic equations of non-migrated Birkhoffian systems (including free Birkhoffian systems, generalized Birkhoffian systems and constrained Birkhoffian systems) on a time scale are derived based on the time-scale Pfaff-Birkhoff principle and time-scale generalized Birkhoff principle. Secondly, based on the fact that the dynamical functions in the non-migrated Birkhoff’s equations still satisfy the original equations after they have been transformed, the definitions of Mei symmetry on an arbitrary time scale are given, and the corresponding criterion equations are derived. Thirdly, Mei’s symmetry theorems for non-migrated Birkhoffian systems on a time scales are established and proved, and Mei conserved quantities of Birkhoffian systems on a time scale are obtained. The results are illustrated by three examples.
      通信作者: 张毅, zhy@mail.usts.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11972241, 11572212)和江苏省自然科学基金(批准号: BK20191454)资助的课题.
      Corresponding author: Zhang Yi, zhy@mail.usts.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11972241, 11572212) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191454).
    [1]

    Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publ. ) pp59–96

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag) pp1–280

    [3]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp1–228

    [4]

    Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M 1997 Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems (Moscow: UFN) pp118–226

    [5]

    Mei F X 2013 Dynamics of Generalized Birkhoffian Systems (Beijing: Science Press) pp1–206

    [6]

    梅凤翔, 吴惠彬, 李彦敏, 陈向炜 2016 力学学报 48 263Google Scholar

    Mei F X, Wu H B, Li Y M, Chen X W 2016 J. Theor. Appl. Mech. 48 263Google Scholar

    [7]

    梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社) 第1—482页

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) pp1–482 (in Chinese)

    [8]

    Wang P, Xue Y, Liu Y L 2012 Chin. Phys. B 21 070203Google Scholar

    [9]

    Zhang Y, Zhai X H 2015 Nonlinear Dyn. 81 469Google Scholar

    [10]

    Zhang H B, Chen H B 2017 J. Math. Anal. Appl. 456 1442Google Scholar

    [11]

    Zhang Y 2018 Int. J. Non-Linear Mech. 101 36Google Scholar

    [12]

    徐鑫鑫, 张毅 2020 69 220401Google Scholar

    Xu X X, Zhang Y 2020 Acta Phys. Sin. 69 220401Google Scholar

    [13]

    Zhang L J, Zhang Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105435Google Scholar

    [14]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [15]

    Liu S X, Liu C, Guo Y X 2011 Chin. Phys. B 20 034501Google Scholar

    [16]

    Chen X W, Li Y M 2013 Acta Mech. 224 1593Google Scholar

    [17]

    Luo S K, He J M, Xu Y L 2016 Int. J. Non-Linear Mech. 78 105Google Scholar

    [18]

    刘世兴, 刘畅, 郭永新 2011 60 064501Google Scholar

    Liu S X, Liu C, Guo Y X 2011 Acta Phys. Sin. 60 064501Google Scholar

    [19]

    Liu S X, Liu C, Hua W, Guo Y X 2016 Chin. Phys. B 25 114501Google Scholar

    [20]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comput. 225 326

    [21]

    孔新雷, 吴惠彬 2017 66 084501Google Scholar

    Kong X L, Wu H B 2017 Acta Phys. Sin. 66 084501Google Scholar

    [22]

    He L, Wu H B, Mei F X 2017 Nonlinear Dyn. 87 2325Google Scholar

    [23]

    Hilger S 1990 Results Math. 18 18Google Scholar

    [24]

    Bohner M, Peterson A 2001 Dynamic Equations on Time Scales (Boston: Birkhäuser) pp1–353

    [25]

    Bohner M, Georgiev S G 2016 Multivariable Dynamic Calculus on Time Scales (Switzerland: Springer International Publishing AG) pp1–600

    [26]

    Georgiev S G 2018 Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales (Switzerland: Springer International Publishing AG) pp1–357

    [27]

    Atici F M, Biles D C, Lebedinsky A 2006 Math. Comput. Modell. 43 718Google Scholar

    [28]

    Bohner M 2004 Dyn. Syst. Appl. 13 339

    [29]

    Bartosiewicz Z, Torres D F M 2008 J. Math. Anal. Appl. 342 1220Google Scholar

    [30]

    Benkhettou N, Brito da Cruz A M C, Torres D F M 2015 Signal Process. 107 230Google Scholar

    [31]

    Dryl M, Torres D F M 2017 Springer Proceedings in Mathematics & Statistics 195 223

    [32]

    韩振来, 孙书荣 2014 时间尺度上动态方程振动理论 (济南: 山东大学出版社) 第1—232页

    Han Z L, Sun S R 2014 Oscillation Theory of Dynamic Equations on Time Scales (Jinan: Shandong University Press) pp1–232 (in Chinese)

    [33]

    Bourdin L 2014 J. Math. Anal. Appl. 411 543Google Scholar

    [34]

    Anerot B, Cresson J, Belgacem K H, Pierret F 2020 J. Math. Phys. 61 113502Google Scholar

    [35]

    Song C J, Zhang Y 2015 J. Math. Phys. 56 102701Google Scholar

    [36]

    Song C J, Zhang Y 2017 J. Nonlinear Sci. Appl. 10 2268Google Scholar

    [37]

    Song C J, Cheng Y 2020 Appl. Math. Comput. 374 125086

    [38]

    Zhang Y 2019 Chaos, Solitons Fractals 128 306Google Scholar

    [39]

    Zhang Y, Zhai X H 2019 Commun. Nonlinear Sci. Numer. Simul. 75 251Google Scholar

  • [1]

    Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publ. ) pp59–96

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag) pp1–280

    [3]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp1–228

    [4]

    Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M 1997 Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems (Moscow: UFN) pp118–226

    [5]

    Mei F X 2013 Dynamics of Generalized Birkhoffian Systems (Beijing: Science Press) pp1–206

    [6]

    梅凤翔, 吴惠彬, 李彦敏, 陈向炜 2016 力学学报 48 263Google Scholar

    Mei F X, Wu H B, Li Y M, Chen X W 2016 J. Theor. Appl. Mech. 48 263Google Scholar

    [7]

    梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社) 第1—482页

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) pp1–482 (in Chinese)

    [8]

    Wang P, Xue Y, Liu Y L 2012 Chin. Phys. B 21 070203Google Scholar

    [9]

    Zhang Y, Zhai X H 2015 Nonlinear Dyn. 81 469Google Scholar

    [10]

    Zhang H B, Chen H B 2017 J. Math. Anal. Appl. 456 1442Google Scholar

    [11]

    Zhang Y 2018 Int. J. Non-Linear Mech. 101 36Google Scholar

    [12]

    徐鑫鑫, 张毅 2020 69 220401Google Scholar

    Xu X X, Zhang Y 2020 Acta Phys. Sin. 69 220401Google Scholar

    [13]

    Zhang L J, Zhang Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105435Google Scholar

    [14]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [15]

    Liu S X, Liu C, Guo Y X 2011 Chin. Phys. B 20 034501Google Scholar

    [16]

    Chen X W, Li Y M 2013 Acta Mech. 224 1593Google Scholar

    [17]

    Luo S K, He J M, Xu Y L 2016 Int. J. Non-Linear Mech. 78 105Google Scholar

    [18]

    刘世兴, 刘畅, 郭永新 2011 60 064501Google Scholar

    Liu S X, Liu C, Guo Y X 2011 Acta Phys. Sin. 60 064501Google Scholar

    [19]

    Liu S X, Liu C, Hua W, Guo Y X 2016 Chin. Phys. B 25 114501Google Scholar

    [20]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comput. 225 326

    [21]

    孔新雷, 吴惠彬 2017 66 084501Google Scholar

    Kong X L, Wu H B 2017 Acta Phys. Sin. 66 084501Google Scholar

    [22]

    He L, Wu H B, Mei F X 2017 Nonlinear Dyn. 87 2325Google Scholar

    [23]

    Hilger S 1990 Results Math. 18 18Google Scholar

    [24]

    Bohner M, Peterson A 2001 Dynamic Equations on Time Scales (Boston: Birkhäuser) pp1–353

    [25]

    Bohner M, Georgiev S G 2016 Multivariable Dynamic Calculus on Time Scales (Switzerland: Springer International Publishing AG) pp1–600

    [26]

    Georgiev S G 2018 Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales (Switzerland: Springer International Publishing AG) pp1–357

    [27]

    Atici F M, Biles D C, Lebedinsky A 2006 Math. Comput. Modell. 43 718Google Scholar

    [28]

    Bohner M 2004 Dyn. Syst. Appl. 13 339

    [29]

    Bartosiewicz Z, Torres D F M 2008 J. Math. Anal. Appl. 342 1220Google Scholar

    [30]

    Benkhettou N, Brito da Cruz A M C, Torres D F M 2015 Signal Process. 107 230Google Scholar

    [31]

    Dryl M, Torres D F M 2017 Springer Proceedings in Mathematics & Statistics 195 223

    [32]

    韩振来, 孙书荣 2014 时间尺度上动态方程振动理论 (济南: 山东大学出版社) 第1—232页

    Han Z L, Sun S R 2014 Oscillation Theory of Dynamic Equations on Time Scales (Jinan: Shandong University Press) pp1–232 (in Chinese)

    [33]

    Bourdin L 2014 J. Math. Anal. Appl. 411 543Google Scholar

    [34]

    Anerot B, Cresson J, Belgacem K H, Pierret F 2020 J. Math. Phys. 61 113502Google Scholar

    [35]

    Song C J, Zhang Y 2015 J. Math. Phys. 56 102701Google Scholar

    [36]

    Song C J, Zhang Y 2017 J. Nonlinear Sci. Appl. 10 2268Google Scholar

    [37]

    Song C J, Cheng Y 2020 Appl. Math. Comput. 374 125086

    [38]

    Zhang Y 2019 Chaos, Solitons Fractals 128 306Google Scholar

    [39]

    Zhang Y, Zhai X H 2019 Commun. Nonlinear Sci. Numer. Simul. 75 251Google Scholar

  • [1] 宋会杰, 董绍武, 王翔, 章宇, 王燕平. 原子钟噪声变化时改进的Kalman滤波时间尺度算法.  , 2020, 69(17): 170201. doi: 10.7498/aps.69.20191920
    [2] 陈菊, 张毅. El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量.  , 2014, 63(10): 104501. doi: 10.7498/aps.63.104501
    [3] 丁光涛. 构造Birkhoff表示的Hojman方法与Birkhoff对称性.  , 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [4] 丁光涛. 规范变换对Birkhoff系统对称性的影响.  , 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [5] 支蓉, 龚志强, 郑志海, 周磊. 基于矩阵理论的全球温度资料的尺度性研究.  , 2009, 58(3): 2113-2120. doi: 10.7498/aps.58.2113
    [6] 林敏, 方利民. 双稳系统演化的时间尺度与随机共振的加强.  , 2009, 58(4): 2136-2140. doi: 10.7498/aps.58.2136
    [7] 张 毅. 事件空间中Birkhoff系统的参数方程及其第一积分.  , 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [8] 张 毅. Birkhoff系统约化的Routh方法.  , 2008, 57(9): 5374-5377. doi: 10.7498/aps.57.5374
    [9] 张 毅. 事件空间中Birkhoff系统的Noether理论.  , 2008, 57(5): 2643-2648. doi: 10.7498/aps.57.2643
    [10] 葛伟宽, 梅凤翔. Birkhoff系统的时间积分定理.  , 2007, 56(5): 2479-2481. doi: 10.7498/aps.56.2479
    [11] 张 毅. Birkhoff系统的一类新型绝热不变量.  , 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [12] 郑世旺, 贾利群. Birkhoff系统的局部能量积分.  , 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590
    [13] 张鹏玉, 方建会. 变质量Birkhoff系统的Lie对称性和非Noether守恒量.  , 2006, 55(8): 3813-3816. doi: 10.7498/aps.55.3813
    [14] 张 毅, 范存新, 葛伟宽. Birkhoff系统的一类新型守恒量.  , 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
    [15] 张 毅, 梅凤翔. 约束对Birkhoff系统Noether对称性和守恒量的影响.  , 2004, 53(8): 2419-2423. doi: 10.7498/aps.53.2419
    [16] 张 毅. Birkhoff系统的Hojman定理的几何基础.  , 2004, 53(12): 4026-4028. doi: 10.7498/aps.53.4026
    [17] 傅景礼, 陈立群, 薛纭, 罗绍凯. 相对论Birkhoff系统的平衡稳定性.  , 2002, 51(12): 2683-2689. doi: 10.7498/aps.51.2683
    [18] 张毅. Birkhoff系统的一类Lie对称性守恒量.  , 2002, 51(3): 461-464. doi: 10.7498/aps.51.461
    [19] 张毅. 单面约束Birkhoff系统对称性的摄动与绝热不变量.  , 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
    [20] 傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民. 相对论Birkhoff系统动力学研究.  , 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
计量
  • 文章访问数:  3865
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 修回日期:  2021-09-09
  • 上网日期:  2021-09-23
  • 刊出日期:  2021-12-20

/

返回文章
返回
Baidu
map