-
In order to further improve the capabilities of clutter suppression and target detection in airborne multiple-input multiple-output (MIMO) radar space-time adaptive processing (STAP), the polarization-space-time adaptive processing (PSTAP) method based on polarization array MIMO radar is proposed. Firstly, by applying the novel polarization array to airborne MMO radar, the signal model of airborne polarization array MIMO radar PSTAP is established. Then based on the idea of resolution grid, the influence of clutter can be equivalent to the formation of independent point sources of clutter related to the clutter degree of freedom, and an equivalent expression for the covariance matrix in polarization array MIMO radar PSTAP is obtained. Next, combined with the equivalent covariance matrix, the signal-to-clutter-plus-noise ratio (SCNR) performance of the polarization array MIMO radar PSTAP is derived and analyzed. The effects of the polarization, spatial and temporal matching coefficients are discussed. When the target is located in the side-looking direction of the airborne radar, the normalized spatial frequency of the target is zero. Then the spatial transmit and spatial receive matching coefficients between the target and the clutter point source in the center of the space-time plane both approach to one. Meanwhile, the normalized Doppler frequency of the side-looking target is in direct proportion to the target speed. When the target speed decreases to zero, the temporal Doppler matching coefficient between the target and the central clutter source is near to one. Thus taking the spatial and temporal matching coefficients into consideration, the SCNR loss of the traditional MIMO-STAP is approximate to zero. It indicates that for traditional MIMO-STAP, its performance of detecting low-speed target is severely degraded by the clutter source, and target detection can hardly be realized just in space-time domains. However, through utilizing the additional polarization information to take advantage of the polarization matching coefficient, the polarization array MIMO radar PSTAP increases the SCNR loss and remarkably lessens the influence of the central clutter source. According to the above theoretical analysis, we can come to the conclusion that the polarization array MIMO radar PSTAP can effectively promote the capability of clutter suppression compared with the traditional MIMO-STAP, which is beneficial to the detection of the moving target with low-speed. Moreover, the improvement of output SCNR performance becomes more significant with increasing the differences between the polarization parameters of target and those of clutter. Therefore, the polarization array MIMO radar PSTAP has great application value for practical engineering. The simulation results verify the validity and superiority of the proposed polarization array MIMO radar PSTAP method.
-
Keywords:
- airborne MIMO radar /
- polarization array /
- polarization-space-time adaptive processing /
- analysis of signal-to-clutter-plus-noise ratio
[1] Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101
[2] Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481
[3] Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 62 238402]
[4] Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54
[5] Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71
[6] Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R 2006 IEEE Trans. Signal Process. 54 823
[7] Haimovich A, Blum R S, Cimini L J 2008 IEEE Signal Process. Mag. 25 116
[8] Li J, Stoica P 2007 IEEE Signal Process. Mag. 24 106
[9] Wen F Q, Zang G, Ben D 2015 Chin. Phys. B 24 110201
[10] Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese)[黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]
[11] Wang T, Zhao Y J, Hu T 2015 J. Radars 4 136 (in Chinese)[王珽, 赵拥军, 胡涛 2015 雷达学报 4 136]
[12] Brennan L E, Reed I S 1973 IEEE Trans. Aerosp. Electron. Syst. 9 237
[13] Guerci J R 2003 Space Time Adaptive Processing for Radar (Norwood, MA:Artech House, Inc.) pp3-55
[14] Klemm R 2002 Principles of Space-Time Adaptive Processing (London:The Institution of Electrical Engineers) pp2-45
[15] Wang Y L, Peng Y N 2000 Space-Time Adaptive Processing (Beijing:Tsinghua University Press) pp1-9 (in Chinese)[王永良, 彭应宁 2000 空时自适应信号处理 (北京:清华大学出版社) 第1–9页]
[16] Wang Y L, Li T Q 2008 J. China Acad. Electron. Inf. Technol. 3 271 (in Chinese)[王永良, 李天泉 2008 中国电子科学研究院学报 3 271]
[17] Zhang L, Xu Y G 2015 Modern Radar 37 1 (in Chinese)[张良, 徐艳国 2015 现代雷达 37 1]
[18] Chen C Y, Vaidyanathan P P 2008 IEEE Trans. Signal Process. 56 623
[19] Wang W, Chen Z, Li X, Wang B 2016 IET Radar Sonar Navig. 10 459
[20] Zhang W, He Z S, Li J, Li C H 2015 IET Radar Sonar Navig. 9 772
[21] Wu D J, Xu Z H, Zhang L, Xiong Z Y, Xiao S P 2012 Prog. Electromagn. Res. 129 579
[22] Wu D J, Xu Z H, Xiong Z Y, Zhang L, Xiao S P 2012 Acta Electron. Sin. 40 1430 (in Chinese)[吴迪军, 徐振海, 熊子源, 张亮, 肖顺平 2012 电子学报 40 1430]
[23] Du W T, Liao G S, Yang Z W, Xin Z H 2014 Acta Electron. Sin. 42 523 (in Chinese)[杜文韬, 廖桂生, 杨志伟, 辛志慧 2014 电子学报 42 523]
[24] Zhao X B, Yan W, Wang Y Q, Lu W, Ma S 2014 Acta Phys. Sin. 63 218401 (in Chinese)[赵现斌, 严卫, 王迎强, 陆文, 马烁 2014 63 218401]
[25] Xu Y G, Xu Z W, Gong X F 2013 Signal Processing Based on Polarization Sensitive Array (Beijing:Beijing Institute of Technology Press) pp1-21 (in Chinese)[徐友根, 刘志文, 龚晓峰 2013 极化敏感阵列信号处理 (北京:北京理工大学出版社) 第1–21页]
[26] Wang X S 2016 J. Radars 5 119 (in Chinese)[王雪松 2016 雷达学报 5 119]
[27] Gu C, He J, Li H, Zhu X 2013 Signal Process. 93 2103
[28] Zheng G M, Yang M L, Chen B X, Yang R X 2012 J. Electron. Inf. Technol. 34 2635 (in Chinese)[郑桂妹, 杨明磊, 陈伯孝, 杨瑞兴 2012 电子与信息学报 34 2635]
[29] Wang K R, Zhu X H, He J 2012 J. Electron. Inf. Technol. 34 160 (in Chinese)[王克让, 朱晓华, 何劲 2012 电子与信息学报 34 160]
[30] Li N, Cui G, Kong L, Liu Q H 2015 IET Radar Sonar Navig. 9 285
[31] Gogineni S, Nehorai A 2010 IEEE Trans. Signal Process. 58 1689
[32] Wu Y, Tang J, Peng Y N 2011 IEEE Trans. Aerosp. Electron. Syst. 47 569
[33] Zhang X D 2013 Matrix Analysis and Applications (Second Edition) (Beijing:Tsinghua University Press) pp26-72 (in Chinese)[张贤达 2013 矩阵分析与应用(第2版) (北京:清华大学出版社) 第26–72页]
-
[1] Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101
[2] Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481
[3] Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 62 238402]
[4] Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54
[5] Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71
[6] Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R 2006 IEEE Trans. Signal Process. 54 823
[7] Haimovich A, Blum R S, Cimini L J 2008 IEEE Signal Process. Mag. 25 116
[8] Li J, Stoica P 2007 IEEE Signal Process. Mag. 24 106
[9] Wen F Q, Zang G, Ben D 2015 Chin. Phys. B 24 110201
[10] Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese)[黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]
[11] Wang T, Zhao Y J, Hu T 2015 J. Radars 4 136 (in Chinese)[王珽, 赵拥军, 胡涛 2015 雷达学报 4 136]
[12] Brennan L E, Reed I S 1973 IEEE Trans. Aerosp. Electron. Syst. 9 237
[13] Guerci J R 2003 Space Time Adaptive Processing for Radar (Norwood, MA:Artech House, Inc.) pp3-55
[14] Klemm R 2002 Principles of Space-Time Adaptive Processing (London:The Institution of Electrical Engineers) pp2-45
[15] Wang Y L, Peng Y N 2000 Space-Time Adaptive Processing (Beijing:Tsinghua University Press) pp1-9 (in Chinese)[王永良, 彭应宁 2000 空时自适应信号处理 (北京:清华大学出版社) 第1–9页]
[16] Wang Y L, Li T Q 2008 J. China Acad. Electron. Inf. Technol. 3 271 (in Chinese)[王永良, 李天泉 2008 中国电子科学研究院学报 3 271]
[17] Zhang L, Xu Y G 2015 Modern Radar 37 1 (in Chinese)[张良, 徐艳国 2015 现代雷达 37 1]
[18] Chen C Y, Vaidyanathan P P 2008 IEEE Trans. Signal Process. 56 623
[19] Wang W, Chen Z, Li X, Wang B 2016 IET Radar Sonar Navig. 10 459
[20] Zhang W, He Z S, Li J, Li C H 2015 IET Radar Sonar Navig. 9 772
[21] Wu D J, Xu Z H, Zhang L, Xiong Z Y, Xiao S P 2012 Prog. Electromagn. Res. 129 579
[22] Wu D J, Xu Z H, Xiong Z Y, Zhang L, Xiao S P 2012 Acta Electron. Sin. 40 1430 (in Chinese)[吴迪军, 徐振海, 熊子源, 张亮, 肖顺平 2012 电子学报 40 1430]
[23] Du W T, Liao G S, Yang Z W, Xin Z H 2014 Acta Electron. Sin. 42 523 (in Chinese)[杜文韬, 廖桂生, 杨志伟, 辛志慧 2014 电子学报 42 523]
[24] Zhao X B, Yan W, Wang Y Q, Lu W, Ma S 2014 Acta Phys. Sin. 63 218401 (in Chinese)[赵现斌, 严卫, 王迎强, 陆文, 马烁 2014 63 218401]
[25] Xu Y G, Xu Z W, Gong X F 2013 Signal Processing Based on Polarization Sensitive Array (Beijing:Beijing Institute of Technology Press) pp1-21 (in Chinese)[徐友根, 刘志文, 龚晓峰 2013 极化敏感阵列信号处理 (北京:北京理工大学出版社) 第1–21页]
[26] Wang X S 2016 J. Radars 5 119 (in Chinese)[王雪松 2016 雷达学报 5 119]
[27] Gu C, He J, Li H, Zhu X 2013 Signal Process. 93 2103
[28] Zheng G M, Yang M L, Chen B X, Yang R X 2012 J. Electron. Inf. Technol. 34 2635 (in Chinese)[郑桂妹, 杨明磊, 陈伯孝, 杨瑞兴 2012 电子与信息学报 34 2635]
[29] Wang K R, Zhu X H, He J 2012 J. Electron. Inf. Technol. 34 160 (in Chinese)[王克让, 朱晓华, 何劲 2012 电子与信息学报 34 160]
[30] Li N, Cui G, Kong L, Liu Q H 2015 IET Radar Sonar Navig. 9 285
[31] Gogineni S, Nehorai A 2010 IEEE Trans. Signal Process. 58 1689
[32] Wu Y, Tang J, Peng Y N 2011 IEEE Trans. Aerosp. Electron. Syst. 47 569
[33] Zhang X D 2013 Matrix Analysis and Applications (Second Edition) (Beijing:Tsinghua University Press) pp26-72 (in Chinese)[张贤达 2013 矩阵分析与应用(第2版) (北京:清华大学出版社) 第26–72页]
Catalog
Metrics
- Abstract views: 5661
- PDF Downloads: 158
- Cited By: 0