Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance analysis of polarization-space-time adaptive processing for airborne polarization array multiple-input multiple-output radar

Wang Ting Zhao Yong-Jun Lai Tao Wang Jian-Tao

Citation:

Performance analysis of polarization-space-time adaptive processing for airborne polarization array multiple-input multiple-output radar

Wang Ting, Zhao Yong-Jun, Lai Tao, Wang Jian-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to further improve the capabilities of clutter suppression and target detection in airborne multiple-input multiple-output (MIMO) radar space-time adaptive processing (STAP), the polarization-space-time adaptive processing (PSTAP) method based on polarization array MIMO radar is proposed. Firstly, by applying the novel polarization array to airborne MMO radar, the signal model of airborne polarization array MIMO radar PSTAP is established. Then based on the idea of resolution grid, the influence of clutter can be equivalent to the formation of independent point sources of clutter related to the clutter degree of freedom, and an equivalent expression for the covariance matrix in polarization array MIMO radar PSTAP is obtained. Next, combined with the equivalent covariance matrix, the signal-to-clutter-plus-noise ratio (SCNR) performance of the polarization array MIMO radar PSTAP is derived and analyzed. The effects of the polarization, spatial and temporal matching coefficients are discussed. When the target is located in the side-looking direction of the airborne radar, the normalized spatial frequency of the target is zero. Then the spatial transmit and spatial receive matching coefficients between the target and the clutter point source in the center of the space-time plane both approach to one. Meanwhile, the normalized Doppler frequency of the side-looking target is in direct proportion to the target speed. When the target speed decreases to zero, the temporal Doppler matching coefficient between the target and the central clutter source is near to one. Thus taking the spatial and temporal matching coefficients into consideration, the SCNR loss of the traditional MIMO-STAP is approximate to zero. It indicates that for traditional MIMO-STAP, its performance of detecting low-speed target is severely degraded by the clutter source, and target detection can hardly be realized just in space-time domains. However, through utilizing the additional polarization information to take advantage of the polarization matching coefficient, the polarization array MIMO radar PSTAP increases the SCNR loss and remarkably lessens the influence of the central clutter source. According to the above theoretical analysis, we can come to the conclusion that the polarization array MIMO radar PSTAP can effectively promote the capability of clutter suppression compared with the traditional MIMO-STAP, which is beneficial to the detection of the moving target with low-speed. Moreover, the improvement of output SCNR performance becomes more significant with increasing the differences between the polarization parameters of target and those of clutter. Therefore, the polarization array MIMO radar PSTAP has great application value for practical engineering. The simulation results verify the validity and superiority of the proposed polarization array MIMO radar PSTAP method.
      Corresponding author: Wang Ting, wangtingsp@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61501513,41301481).
    [1]

    Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

    [2]

    Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481

    [3]

    Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 62 238402]

    [4]

    Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54

    [5]

    Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71

    [6]

    Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R 2006 IEEE Trans. Signal Process. 54 823

    [7]

    Haimovich A, Blum R S, Cimini L J 2008 IEEE Signal Process. Mag. 25 116

    [8]

    Li J, Stoica P 2007 IEEE Signal Process. Mag. 24 106

    [9]

    Wen F Q, Zang G, Ben D 2015 Chin. Phys. B 24 110201

    [10]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese)[黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]

    [11]

    Wang T, Zhao Y J, Hu T 2015 J. Radars 4 136 (in Chinese)[王珽, 赵拥军, 胡涛 2015 雷达学报 4 136]

    [12]

    Brennan L E, Reed I S 1973 IEEE Trans. Aerosp. Electron. Syst. 9 237

    [13]

    Guerci J R 2003 Space Time Adaptive Processing for Radar (Norwood, MA:Artech House, Inc.) pp3-55

    [14]

    Klemm R 2002 Principles of Space-Time Adaptive Processing (London:The Institution of Electrical Engineers) pp2-45

    [15]

    Wang Y L, Peng Y N 2000 Space-Time Adaptive Processing (Beijing:Tsinghua University Press) pp1-9 (in Chinese)[王永良, 彭应宁 2000 空时自适应信号处理 (北京:清华大学出版社) 第1–9页]

    [16]

    Wang Y L, Li T Q 2008 J. China Acad. Electron. Inf. Technol. 3 271 (in Chinese)[王永良, 李天泉 2008 中国电子科学研究院学报 3 271]

    [17]

    Zhang L, Xu Y G 2015 Modern Radar 37 1 (in Chinese)[张良, 徐艳国 2015 现代雷达 37 1]

    [18]

    Chen C Y, Vaidyanathan P P 2008 IEEE Trans. Signal Process. 56 623

    [19]

    Wang W, Chen Z, Li X, Wang B 2016 IET Radar Sonar Navig. 10 459

    [20]

    Zhang W, He Z S, Li J, Li C H 2015 IET Radar Sonar Navig. 9 772

    [21]

    Wu D J, Xu Z H, Zhang L, Xiong Z Y, Xiao S P 2012 Prog. Electromagn. Res. 129 579

    [22]

    Wu D J, Xu Z H, Xiong Z Y, Zhang L, Xiao S P 2012 Acta Electron. Sin. 40 1430 (in Chinese)[吴迪军, 徐振海, 熊子源, 张亮, 肖顺平 2012 电子学报 40 1430]

    [23]

    Du W T, Liao G S, Yang Z W, Xin Z H 2014 Acta Electron. Sin. 42 523 (in Chinese)[杜文韬, 廖桂生, 杨志伟, 辛志慧 2014 电子学报 42 523]

    [24]

    Zhao X B, Yan W, Wang Y Q, Lu W, Ma S 2014 Acta Phys. Sin. 63 218401 (in Chinese)[赵现斌, 严卫, 王迎强, 陆文, 马烁 2014 63 218401]

    [25]

    Xu Y G, Xu Z W, Gong X F 2013 Signal Processing Based on Polarization Sensitive Array (Beijing:Beijing Institute of Technology Press) pp1-21 (in Chinese)[徐友根, 刘志文, 龚晓峰 2013 极化敏感阵列信号处理 (北京:北京理工大学出版社) 第1–21页]

    [26]

    Wang X S 2016 J. Radars 5 119 (in Chinese)[王雪松 2016 雷达学报 5 119]

    [27]

    Gu C, He J, Li H, Zhu X 2013 Signal Process. 93 2103

    [28]

    Zheng G M, Yang M L, Chen B X, Yang R X 2012 J. Electron. Inf. Technol. 34 2635 (in Chinese)[郑桂妹, 杨明磊, 陈伯孝, 杨瑞兴 2012 电子与信息学报 34 2635]

    [29]

    Wang K R, Zhu X H, He J 2012 J. Electron. Inf. Technol. 34 160 (in Chinese)[王克让, 朱晓华, 何劲 2012 电子与信息学报 34 160]

    [30]

    Li N, Cui G, Kong L, Liu Q H 2015 IET Radar Sonar Navig. 9 285

    [31]

    Gogineni S, Nehorai A 2010 IEEE Trans. Signal Process. 58 1689

    [32]

    Wu Y, Tang J, Peng Y N 2011 IEEE Trans. Aerosp. Electron. Syst. 47 569

    [33]

    Zhang X D 2013 Matrix Analysis and Applications (Second Edition) (Beijing:Tsinghua University Press) pp26-72 (in Chinese)[张贤达 2013 矩阵分析与应用(第2版) (北京:清华大学出版社) 第26–72页]

  • [1]

    Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

    [2]

    Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481

    [3]

    Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 62 238402]

    [4]

    Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54

    [5]

    Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71

    [6]

    Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R 2006 IEEE Trans. Signal Process. 54 823

    [7]

    Haimovich A, Blum R S, Cimini L J 2008 IEEE Signal Process. Mag. 25 116

    [8]

    Li J, Stoica P 2007 IEEE Signal Process. Mag. 24 106

    [9]

    Wen F Q, Zang G, Ben D 2015 Chin. Phys. B 24 110201

    [10]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese)[黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]

    [11]

    Wang T, Zhao Y J, Hu T 2015 J. Radars 4 136 (in Chinese)[王珽, 赵拥军, 胡涛 2015 雷达学报 4 136]

    [12]

    Brennan L E, Reed I S 1973 IEEE Trans. Aerosp. Electron. Syst. 9 237

    [13]

    Guerci J R 2003 Space Time Adaptive Processing for Radar (Norwood, MA:Artech House, Inc.) pp3-55

    [14]

    Klemm R 2002 Principles of Space-Time Adaptive Processing (London:The Institution of Electrical Engineers) pp2-45

    [15]

    Wang Y L, Peng Y N 2000 Space-Time Adaptive Processing (Beijing:Tsinghua University Press) pp1-9 (in Chinese)[王永良, 彭应宁 2000 空时自适应信号处理 (北京:清华大学出版社) 第1–9页]

    [16]

    Wang Y L, Li T Q 2008 J. China Acad. Electron. Inf. Technol. 3 271 (in Chinese)[王永良, 李天泉 2008 中国电子科学研究院学报 3 271]

    [17]

    Zhang L, Xu Y G 2015 Modern Radar 37 1 (in Chinese)[张良, 徐艳国 2015 现代雷达 37 1]

    [18]

    Chen C Y, Vaidyanathan P P 2008 IEEE Trans. Signal Process. 56 623

    [19]

    Wang W, Chen Z, Li X, Wang B 2016 IET Radar Sonar Navig. 10 459

    [20]

    Zhang W, He Z S, Li J, Li C H 2015 IET Radar Sonar Navig. 9 772

    [21]

    Wu D J, Xu Z H, Zhang L, Xiong Z Y, Xiao S P 2012 Prog. Electromagn. Res. 129 579

    [22]

    Wu D J, Xu Z H, Xiong Z Y, Zhang L, Xiao S P 2012 Acta Electron. Sin. 40 1430 (in Chinese)[吴迪军, 徐振海, 熊子源, 张亮, 肖顺平 2012 电子学报 40 1430]

    [23]

    Du W T, Liao G S, Yang Z W, Xin Z H 2014 Acta Electron. Sin. 42 523 (in Chinese)[杜文韬, 廖桂生, 杨志伟, 辛志慧 2014 电子学报 42 523]

    [24]

    Zhao X B, Yan W, Wang Y Q, Lu W, Ma S 2014 Acta Phys. Sin. 63 218401 (in Chinese)[赵现斌, 严卫, 王迎强, 陆文, 马烁 2014 63 218401]

    [25]

    Xu Y G, Xu Z W, Gong X F 2013 Signal Processing Based on Polarization Sensitive Array (Beijing:Beijing Institute of Technology Press) pp1-21 (in Chinese)[徐友根, 刘志文, 龚晓峰 2013 极化敏感阵列信号处理 (北京:北京理工大学出版社) 第1–21页]

    [26]

    Wang X S 2016 J. Radars 5 119 (in Chinese)[王雪松 2016 雷达学报 5 119]

    [27]

    Gu C, He J, Li H, Zhu X 2013 Signal Process. 93 2103

    [28]

    Zheng G M, Yang M L, Chen B X, Yang R X 2012 J. Electron. Inf. Technol. 34 2635 (in Chinese)[郑桂妹, 杨明磊, 陈伯孝, 杨瑞兴 2012 电子与信息学报 34 2635]

    [29]

    Wang K R, Zhu X H, He J 2012 J. Electron. Inf. Technol. 34 160 (in Chinese)[王克让, 朱晓华, 何劲 2012 电子与信息学报 34 160]

    [30]

    Li N, Cui G, Kong L, Liu Q H 2015 IET Radar Sonar Navig. 9 285

    [31]

    Gogineni S, Nehorai A 2010 IEEE Trans. Signal Process. 58 1689

    [32]

    Wu Y, Tang J, Peng Y N 2011 IEEE Trans. Aerosp. Electron. Syst. 47 569

    [33]

    Zhang X D 2013 Matrix Analysis and Applications (Second Edition) (Beijing:Tsinghua University Press) pp26-72 (in Chinese)[张贤达 2013 矩阵分析与应用(第2版) (北京:清华大学出版社) 第26–72页]

  • [1] Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie. Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating. Acta Physica Sinica, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [2] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [3] Xie Qian-Peng, Pan Xiao-Yi, Chen Ji-Yuan, Xiao Shun-Ping. Joint angle and polarization parameter estimation for the new designed bistatic multiple-input multiple-output radar with long dipoles and large loops. Acta Physica Sinica, 2021, 70(4): 044302. doi: 10.7498/aps.70.20201111
    [4] Xie Qian-Peng, Pan Xiao-Yi, Chen Ji-Yuan, Xiao Shun-Ping. Efficient angle and polarization parameter estimaiton for electromagnetic vector sensors multiple-input multiple-output radar by using sparse array. Acta Physica Sinica, 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895
    [5] Li Jing-He, He Zhan-Xiang, Yang Jun, Meng Shu-Jun, Li Wen-Jie, Liao Xiao-Qian. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain. Acta Physica Sinica, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [6] Wang Meng-Jiao, Zhou Ze-Quan, Li Zhi-Jun, Zeng Yi-Cheng. An adaptive denoising algorithm for chaotic signals based on collaborative filtering. Acta Physica Sinica, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [7] Wang Yan, Wang Fei, Wang Ting-Feng, Xie Jing-Jiang. Laser array imaging point cloud registration based on adaptive threshold. Acta Physica Sinica, 2016, 65(24): 249501. doi: 10.7498/aps.65.249501
    [8] Cao Chao, Wang Sheng, Tang Ke, Yin Wei, Wu Yang. Comparison of two approaches to magnetic field quantification by polarized neutron images. Acta Physica Sinica, 2014, 63(18): 182801. doi: 10.7498/aps.63.182801
    [9] Huang Cong, Sun Da-Jun, Zhang Dian-Lun, Teng Ting-Ting. Optimizations for robust low sidelobe beamforming of bistatic multiple-input multiple-output virtual array. Acta Physica Sinica, 2014, 63(18): 188401. doi: 10.7498/aps.63.188401
    [10] Cao Chao, Li Hang, Huo He-Yong, Tang Ke, Sun Yong. Effect of apparatus polarization efficiency on quantification analysis in polarized neutron imaging. Acta Physica Sinica, 2013, 62(16): 162801. doi: 10.7498/aps.62.162801
    [11] Zhao Xian-Bin, Yan Wei, Kong Yi, Han Ding, Liu Wen-Jun. Theoretical research and experimental verification for ocean surface wind vector retrieval from airborne C-band fully polarimetric SAR. Acta Physica Sinica, 2013, 62(13): 138402. doi: 10.7498/aps.62.138402
    [12] Wang Wei, Qiao Gang, Xing Si-Yu. A selective mapping peak-to-average power ratio reduction algorithm without side information for underwater acoustic multiple-input multiple-output orthogonal frequency division multiplexing communication. Acta Physica Sinica, 2013, 62(18): 184301. doi: 10.7498/aps.62.184301
    [13] Yao Shu-Chang, Fu Song-Nian, Zhang Min-Ming, Tang Ming, Shen Ping, Liu De-Ming. Demodulation and multi-input multi-output equalization for mode division multiplexing system using a novel few-mode fiber. Acta Physica Sinica, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [14] Ai Wei-Hua, Kong Yi, Zhao Xian-Bin. Ocean surface wind direction retrieval from multi-polarization airborne SAR based on wavelet. Acta Physica Sinica, 2012, 61(14): 148403. doi: 10.7498/aps.61.148403
    [15] Hai Lin, Zhang Ye-Rong. Statistical modeling arbitrary diversitiy multi-input multi-output systems. Acta Physica Sinica, 2012, 61(18): 180101. doi: 10.7498/aps.61.180101
    [16] Xiao Hai-Lin, Ouyang Shan, Nie Zai-Ping. Capacity of multiple-input-multiple-output quantum key distribution channels. Acta Physica Sinica, 2009, 58(10): 6779-6785. doi: 10.7498/aps.58.6779
    [17] Zhou Ying, Zang Qiang. Output feedback adaptive maneuvering for multi-input multi-output uncertain nonlinear systems. Acta Physica Sinica, 2009, 58(11): 7565-7572. doi: 10.7498/aps.58.7565
    [18] Shen Qi-Kun, Zhang Tian-Ping, Sun Yan. Adaptive chaos control with dead-zone and saturating input. Acta Physica Sinica, 2007, 56(11): 6263-6269. doi: 10.7498/aps.56.6263
    [19] Li Tong-Cang, Liu Zhi-Jing, Wang Ke-Yi. Calculations of the spin-polarization of the electronic current injected from a ferromagnetic metal into a semiconductor. Acta Physica Sinica, 2003, 52(11): 2912-2917. doi: 10.7498/aps.52.2912
    [20] Xue Yue-Ju, Yin Xun-He, Feng Ru-Peng. . Acta Physica Sinica, 2000, 49(4): 641-646. doi: 10.7498/aps.49.641
Metrics
  • Abstract views:  5661
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2016
  • Accepted Date:  25 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map