搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空气中等离子光栅诱导探测光丝三次谐波辐射放大的实验研究

刘作业 史彦超 胡碧涛

引用本文:
Citation:

空气中等离子光栅诱导探测光丝三次谐波辐射放大的实验研究

刘作业, 史彦超, 胡碧涛

Efficient generation of third harmonic radiation of air filament induced by plasma grating

Liu Zuo-Ye, Shi Yan-Chao, Hu Bi-Tao
PDF
导出引用
  • 对探测光丝的不同位置与等离子光栅相互作用和探测光丝作用到等离子光栅不同位置引起三次谐波的增强进行了实验研究. 研究发现,探测光丝的三次谐波信号强度对于探测光丝不同位置与等离子光栅相互作用和等离子光栅内部钳制的激光强度具有极强的依赖关系. 与等离子光栅相互作用,三次谐波信号与等离子光栅基波信号的相位匹配与否是解释探测光丝三次谐波信号强度变化的关键. 控制探测光丝以小角度与等离子光栅相互作用是实现探测光丝三次谐波信号有效放大的最佳途径.
    In this paper, the dependences of the third harmonic generation (THG) of a probe filament on the relative position of the probe filament interacting with the plasma grating and the position of the plasma grating interacting with the probe filament are investigated. The phase matching between the third harmonic of the probe filament and the fundamental wave of the plasma grating is earlier to achieve when the head of the probe filament interacts with the plasma grating, inducing the enhancement of the third harmonic generation, while the phase mismatching happens when the trail of the probe filament interacts with the plasma grating. The distribution of the clamping laser intensity inside the plasma grating results in the dependence of the THG on the positions of the plasma grating interacting with the probe filaments. It is an effective method of promoting the THG by setting the crossing angle between the probe filament and the plasma grating to be very small.
    • 基金项目: 国家自然科学基金(批准号:11135002,11075069,91026021)和教育部学术新人奖资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11135002, 11075069, 91026021) and a scholarship award for Excellent Doctoral Student Granted by Ministry of Education of China.
    [1]

    Tsang T Y F 1995 Phys. Rev. A 52 4116

    [2]

    Fedotov A B, Gladkov S M, Koroteev N I, Zheltikov A M 1991 J. Opt. Soc. Am. B 8 363

    [3]

    Yang H, Zhang J, Zhang J, Zhao L Z, Li Y J, Teng H, Li Y T, Wang Z H, Chen Z L, Wei Z Y, Ma J X, Yu W, Sheng Z M 2003 Phys. Rev. E 67 015401

    [4]

    Hao Z Q, Zhang J, Zhang Z, Xi T T, Zheng Z Y, Yuan X H, Wang Z H 2005 Acta Phys. Sin. 54 3173(in Chinese)[郝作强, 张杰, 张喆, 奚婷婷, 郑志远, 远晓辉, 王兆华 2005 54 3173]

    [5]

    Liu Z Y, Sun S H, Shi Y C, Ding P J, Liu Q C, Liu X L, Ding B W, Hu B T 2013 Chin. Phys. B 22 075204

    [6]

    Wang F, Jiang H B, Gong Q H 2014 Chin. Phys. B 23 014201

    [7]

    Sun S H, Liu X L, Liu Z Y, Wang X S, Ding P J, Liu Q C, Guo Z Q, Hu B T 2013 Chin. Phys. Lett. 30 045202

    [8]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 411 47

    [9]

    Tzortzakis S, Bergé L, Couairon A, Franco M, Prade B, Mysyrowicz A 2001 Phys. Rev. Lett. 86 5470

    [10]

    Couairon A, Bergé L 2000 Phys. Plasmas 7 193

    [11]

    Duan Z L, Chen J P, Fang Z B, Wang X T, Li R X, Lin L H, Xu Z Z 2004 Acta Phys. Sin. 53 473(in Chinese)[段作梁, 陈建平, 方宗豹, 王兴涛, 李儒新, 林礼煌, 徐至展 2004 53 473]

    [12]

    Suntsov S, Abdollahpour D, Papazoglou D G, Tzortzakis S 2009 Opt. Express 17 3190

    [13]

    Suntsov S, Abdollahpour D, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. A 81 033817

    [14]

    Yang X, Wu J, Peng Y, Tong Y Q, Yuan S, Ding L E, Xu Z Z, Zeng H P 2009 Appl. Phys. Lett. 95 111103

    [15]

    Liu Z Y, Ding P J, Shi Y C, Lu X, Sun S H, Liu X L, Liu Q C, Ding B W, Hu B T 2012 Opt. Express 20 8837

    [16]

    Liu Z Y, Ding P J, Shi Y C, Lu X, Sun S H, Liu X L, Liu Q C, Ding B W, Hu B T 2012 Laser Phys. Lett. 9 649

    [17]

    Durand M, Liu Y, Forestier B, Houard A, Mysyrowicz A 2011 Appl. Phys. Lett. 98 121110

    [18]

    Liu J, Li W X, Pan H F, Zeng H P 2011 Appl. Phys. Lett. 99 151105

    [19]

    Wahlstrand J K, Milchberg H M 2011 Opt. Lett. 36 3822

    [20]

    Zhang Z X, Xu R J, Song L W, Wang D, Liu P, Leng Y X 2012 Acta Phys. Sin. 61 184209(in Chinese)[张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣 2012 61 184209]

    [21]

    Kosareva O G, Liu W, Panov N A, Bernhardt J, Ji Z, Sharifi M, Li R, Xu Z, Liu J, Wang Z, Ju J, Lu X, Jiang Y, Leng Y, Liang X, Kandidov V P, Chin S L 2009 Laser Phys. 19 1776

    [22]

    Xu S, Sun X, Zeng B, Chu W, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L 2012 Opt. Express 20 299

    [23]

    Zeng B, Chu W, Gao H, Liu W, Li G, Zhang H, Yao J, Ni J, Chin S L, Cheng Y, Xu Z 2011 Phys. Rev. A 84 063819

    [24]

    Sun X, Xu S, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L, Mu G 2012 Opt. Express 20 4790

  • [1]

    Tsang T Y F 1995 Phys. Rev. A 52 4116

    [2]

    Fedotov A B, Gladkov S M, Koroteev N I, Zheltikov A M 1991 J. Opt. Soc. Am. B 8 363

    [3]

    Yang H, Zhang J, Zhang J, Zhao L Z, Li Y J, Teng H, Li Y T, Wang Z H, Chen Z L, Wei Z Y, Ma J X, Yu W, Sheng Z M 2003 Phys. Rev. E 67 015401

    [4]

    Hao Z Q, Zhang J, Zhang Z, Xi T T, Zheng Z Y, Yuan X H, Wang Z H 2005 Acta Phys. Sin. 54 3173(in Chinese)[郝作强, 张杰, 张喆, 奚婷婷, 郑志远, 远晓辉, 王兆华 2005 54 3173]

    [5]

    Liu Z Y, Sun S H, Shi Y C, Ding P J, Liu Q C, Liu X L, Ding B W, Hu B T 2013 Chin. Phys. B 22 075204

    [6]

    Wang F, Jiang H B, Gong Q H 2014 Chin. Phys. B 23 014201

    [7]

    Sun S H, Liu X L, Liu Z Y, Wang X S, Ding P J, Liu Q C, Guo Z Q, Hu B T 2013 Chin. Phys. Lett. 30 045202

    [8]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 411 47

    [9]

    Tzortzakis S, Bergé L, Couairon A, Franco M, Prade B, Mysyrowicz A 2001 Phys. Rev. Lett. 86 5470

    [10]

    Couairon A, Bergé L 2000 Phys. Plasmas 7 193

    [11]

    Duan Z L, Chen J P, Fang Z B, Wang X T, Li R X, Lin L H, Xu Z Z 2004 Acta Phys. Sin. 53 473(in Chinese)[段作梁, 陈建平, 方宗豹, 王兴涛, 李儒新, 林礼煌, 徐至展 2004 53 473]

    [12]

    Suntsov S, Abdollahpour D, Papazoglou D G, Tzortzakis S 2009 Opt. Express 17 3190

    [13]

    Suntsov S, Abdollahpour D, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. A 81 033817

    [14]

    Yang X, Wu J, Peng Y, Tong Y Q, Yuan S, Ding L E, Xu Z Z, Zeng H P 2009 Appl. Phys. Lett. 95 111103

    [15]

    Liu Z Y, Ding P J, Shi Y C, Lu X, Sun S H, Liu X L, Liu Q C, Ding B W, Hu B T 2012 Opt. Express 20 8837

    [16]

    Liu Z Y, Ding P J, Shi Y C, Lu X, Sun S H, Liu X L, Liu Q C, Ding B W, Hu B T 2012 Laser Phys. Lett. 9 649

    [17]

    Durand M, Liu Y, Forestier B, Houard A, Mysyrowicz A 2011 Appl. Phys. Lett. 98 121110

    [18]

    Liu J, Li W X, Pan H F, Zeng H P 2011 Appl. Phys. Lett. 99 151105

    [19]

    Wahlstrand J K, Milchberg H M 2011 Opt. Lett. 36 3822

    [20]

    Zhang Z X, Xu R J, Song L W, Wang D, Liu P, Leng Y X 2012 Acta Phys. Sin. 61 184209(in Chinese)[张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣 2012 61 184209]

    [21]

    Kosareva O G, Liu W, Panov N A, Bernhardt J, Ji Z, Sharifi M, Li R, Xu Z, Liu J, Wang Z, Ju J, Lu X, Jiang Y, Leng Y, Liang X, Kandidov V P, Chin S L 2009 Laser Phys. 19 1776

    [22]

    Xu S, Sun X, Zeng B, Chu W, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L 2012 Opt. Express 20 299

    [23]

    Zeng B, Chu W, Gao H, Liu W, Li G, Zhang H, Yao J, Ni J, Chin S L, Cheng Y, Xu Z 2011 Phys. Rev. A 84 063819

    [24]

    Sun X, Xu S, Zhao J, Liu W, Cheng Y, Xu Z, Chin S L, Mu G 2012 Opt. Express 20 4790

  • [1] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术.  , 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [2] 杜芊, 陈溢杭. 硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应.  , 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [3] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛. 硅超构表面上强烈增强的三次谐波.  , 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [4] 黄光侨, 林机. 竞争非局域三次五次非线性介质中孤子的传输特性.  , 2017, 66(5): 054208. doi: 10.7498/aps.66.054208
    [5] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响.  , 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [6] 滕欢, 柴路, 王清月, 胡明列. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波.  , 2017, 66(4): 044205. doi: 10.7498/aps.66.044205
    [7] 黄丽萍, 洪斌斌, 刘畅, 唐昌建. 220GHz三次谐波光子带隙谐振腔回旋管振荡器的研究.  , 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [8] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应.  , 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [9] 程科, 吕百达. 四个部分相干点源的完全相消干涉特性.  , 2009, 58(1): 250-257. doi: 10.7498/aps.58.250
    [10] 李 昆, 徐妙华, 金 展, 刘运全, 王兆华, 令维军, 张 杰. 对超短脉冲强激光在大气通道中产生的三次谐波偏振特性及白光光谱调制特性的研究.  , 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [11] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析.  , 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [12] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率.  , 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [13] 郝作强, 张 杰, 张 喆, 奚婷婷, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道的三次谐波辐射研究.  , 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [14] 曾贵华, 诸鸿文, 徐至展. 欠稠密等离子体中诱发的偶次相对论谐波.  , 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
    [15] 喻胜, 李宏福, 谢仲怜, 罗勇. 8mm波段三次谐波复合腔回旋管的非线性分析.  , 2001, 50(10): 1979-1983. doi: 10.7498/aps.50.1979
    [16] 于志刚, 李列明, 孙鑫. MX络合物中电荷密度波和自旋密度波对三次谐波产生系数的影响.  , 1993, 42(9): 1515-1521. doi: 10.7498/aps.42.1515
    [17] 顾敏, 谭维翰, 林尊琪, 毕无忌, 余文炎, 邓锡铭. 激光等离子体二次谐波时间分辨光谱的细结构.  , 1987, 36(5): 655-659. doi: 10.7498/aps.36.655
    [18] 霍崇儒, C. C. WANG, J. L. BOMBACK, J. V. JAMES. 反射三次谐波产生与晶体对称性.  , 1987, 36(11): 1416-1426. doi: 10.7498/aps.36.1416
    [19] 张肇源, 曲林杰, 刘承惠, 霍崇儒. 超短光脉冲的单延迟三次相关测试.  , 1982, 31(2): 213-219. doi: 10.7498/aps.31.213
    [20] 沈文达, 朱莳通. 激光等离子体波纹临界面的共振吸收和二次谐波产生.  , 1981, 30(7): 945-952. doi: 10.7498/aps.30.945
计量
  • 文章访问数:  5465
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-13
  • 修回日期:  2014-04-23
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map