Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influences of quadratic spectral phase on characteristics of two crystal cross-polarized generation with femtosecond pulses

Geng Yi-Xing Li Rong-Feng Zhao Yan-Ying Wang Da-Hui Lu Hai-Yang Yan Xue-Qing

Citation:

Influences of quadratic spectral phase on characteristics of two crystal cross-polarized generation with femtosecond pulses

Geng Yi-Xing, Li Rong-Feng, Zhao Yan-Ying, Wang Da-Hui, Lu Hai-Yang, Yan Xue-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The rapid developments of ultra-intense and ultra-short laser offer the possibility to study laser driven ion acceleration with using solid density target. However, the prepulse and amplified spontaneous emission generated in the amplification can create preplasma at the target front by heating, melting and evaporating a portion of a solid density. The main pulse then interacts with the preplasma, which would be harmful to laser ion acceleration. Therefore, many methods have been developed to enhance the temporal contrast of high power laser system, such as saturable absorber, cross polarized wave generation (XPW) and plasma mirror. With many advantages, such as high conversion efficiency, introducing neither spatial nor spectral distortions, and easy setup compared with other mechanisms, XPW has been used to clean the femtosecond laser system. Besides that, the spectrum of the XPW pulse could be broadened by 3 times under the best condition compared with the initial spectrum. It can solve the spectrum narrowing problem during the laser amplification to obtain ultra-short femtosecond laser pulse. Here, we experimentally investigate the output power, spectrum bandwidth and center wavelength shift of the generated cross-polarized wave according to the input pulse quadratic spectral phase. The femtosecond laser pulse in compact laser plasma accelerator system at Peking University is used to investigate the role of quadratic spectral phase in characterizing the two crystal cross-polarized generation. The Ti:Sapphire-based laser system has a central wavelength of 798 nm and bandwidth of 35.5 nm which allows the pulse to be compressed down to 40 fs duration (FWHM). Typical the input pulse energy of XPW is 150 upJ and the laser system operates well at 1 kHz repetition rate. The quadratic spectral phase can be increased by changing the position of compressor grating. The conversion efficiency, spectrum bandwidth and the central wavelength shift by changing the quadratic spectral phase are measured. The conversion efficiency is 17% when quadratic spectral phase 2=0, and decreases as quadratic spectral phase increases. The rapid decrease is caused by negative quadratic spectral phase. The spectrum bandwidth is 62 nm under the optimum condition, and the broadening effect exists when quadratic spectral phase is in a range of -280 fs2 2 1400 fs2. It is slowly blue-shifted when 20 and stays at 772 nm when 21000 fs2. It starts to be red-shifted when 20 and stays at 806 nm finally. In conclusion, with the increase of quadratic spectral phase, we observe the effects of conversion efficiency and spectrum bandwidth and the shift of central wavelength. Moreover, the influences of positive and negative quadratic spectral phase on characteristics of XPW are different. Our result shows that the negative quadratic spectral phaseis more effective at reducing the conversion efficiency and spectrum bandwidth than the positive one.
      Corresponding author: Zhao Yan-Ying, zhaoyanying@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11504009) and the National Grand Instrument Project,China (Grant No.2012YQ030142).
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Hiroyuki D, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Corde S, TaPhuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1

    [5]

    Ivanov V V, Maksimchuk A, Mourou G 2003 Appl. Opt. 42 7231

    [6]

    Culfa O, Tallents G J, Wagenaars E, Ridgers C P, Dance R J, Rossall A K, Gray R J, McKenna P, Brown C D R, James S F, Hoarty D J, Booth N, Robinson A P L, Lancaster K L, Pikuz S A, Faenov Y A, Kampfer T, Schulze K S, Uschmann I, Woolsey N C 2014 Phys. Plasmas 21 043106

    [7]

    Timur Z E, James K K, Atsushi S, Toshimasa M, Masaharu N, Kei K, Hideo N, Katsunobu N, Akito S, Hideyuki K, Tatsufumi N, Yuji F, Hajime O, Alexander S P, Akifumi Y, Mamiko N, Hiromitsu K, Kiminori K, Masaki K, Sergei V B 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 745 150

    [8]

    Yabuuchi T, Mishra R, McGuffey C, Qiao B, Wei M S, Sawada H, Sentoku Y, Ma T, Higginson D P, Akli K U, Batani D, Chen H, Gizzi L A, Key M H, Mackinnon A J, McLean H S, Norreys P A, Patel P K, Stephens R B, Ping Y, Theobald W, Stoeckl C, Beg F N 2013 New J. Phys. 15 015020

    [9]

    Jeffrey W, Charles G D 2004 Opt. Express 12 1383

    [10]

    Norihiko N, Atsushi M 2007 Opt. Lett. 32 3516

    [11]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, Etchepare J 2005 Opt. Lett. 30 8

    [12]

    Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese)[刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 59 7036]

    [13]

    Röde C, Heyer M, Behmke M, Kübel M, Jäckel O, Ziegler W, Ehrt D, Kaluza M C, Paulus G G 2011 Appl. Phys. B 103 295

    [14]

    Anna L, Tiberio C, Pascal D O, Fabrice R, Michel P, Fabien Q, Pascal M, Michel B, Hervé L, Philippe M 2007 Opt. Lett. 32 310

    [15]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 7

    [16]

    Chvykov V, Rousseau P, Reed S, Kalinchenko G, Yanovsky V 2006 Opt. Lett. 31 1456

    [17]

    Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X, Xu Z Z 2014 Opt. Commun. 313 175

    [18]

    Lureau F, Laux S, Casagrande O, Radier C, Chalus O, Caradec F, Simon-Boisson C 2012 Proc. SPIE 8235 823513

    [19]

    Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 Rev. Sci. Instrum. 84, 043106

    [20]

    Lliev M, Meier A K, Greco M, Durfee C G 2015 Appl. Opt. 54 2

    [21]

    Jullien A, Canova L, Albert O, Boschetto D, Antonucci L, Cha Y H, Rousseau J P, Chaudet P, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2007 Appl. Phys. B 87 595

    [22]

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602 (in Chinese)[李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 64 020602]

    [23]

    Shang Y, Zhu K, Lin C, Lu H Y, Zou Y B, Zhao Y Y, Shou Y R, Cao C, Zhao S, Geng Y X, Zhu J, Fu H Z, Wang H Y, Lu Y R, Yuan Z X, Guo Z Y, Chen J E, Yan X Q 2013 Sci. Sin.:Phys. Mech. Astron. 43 1282 (in Chinese)[尚勇, 朱昆, 林晨, 卢海洋, 邹宇斌, 赵研英, 寿寅任, 曹超, 赵栓, 耿易新, 祝娇, 符合振, 王洪勇, 陆元荣, 袁忠喜, 郭之虞, 陈佳洱, 颜学庆 2013 中国科学:物理学 力学 天文学 43 1282]

    [24]

    Yan X Q, Lin C, Lu H Y, Zhu K, Zou Y B, Wang H Y, Liu B, Zhao S, Zhu J, Geng Y X, Fu H Zh, Shang Y, Cao C, Shou Y R, Song W, Lu Y R, Yuan Z X, Guo Z Y, He X T, Chen J E 2013 Front. Phys. 8 577

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Hiroyuki D, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Corde S, TaPhuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1

    [5]

    Ivanov V V, Maksimchuk A, Mourou G 2003 Appl. Opt. 42 7231

    [6]

    Culfa O, Tallents G J, Wagenaars E, Ridgers C P, Dance R J, Rossall A K, Gray R J, McKenna P, Brown C D R, James S F, Hoarty D J, Booth N, Robinson A P L, Lancaster K L, Pikuz S A, Faenov Y A, Kampfer T, Schulze K S, Uschmann I, Woolsey N C 2014 Phys. Plasmas 21 043106

    [7]

    Timur Z E, James K K, Atsushi S, Toshimasa M, Masaharu N, Kei K, Hideo N, Katsunobu N, Akito S, Hideyuki K, Tatsufumi N, Yuji F, Hajime O, Alexander S P, Akifumi Y, Mamiko N, Hiromitsu K, Kiminori K, Masaki K, Sergei V B 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 745 150

    [8]

    Yabuuchi T, Mishra R, McGuffey C, Qiao B, Wei M S, Sawada H, Sentoku Y, Ma T, Higginson D P, Akli K U, Batani D, Chen H, Gizzi L A, Key M H, Mackinnon A J, McLean H S, Norreys P A, Patel P K, Stephens R B, Ping Y, Theobald W, Stoeckl C, Beg F N 2013 New J. Phys. 15 015020

    [9]

    Jeffrey W, Charles G D 2004 Opt. Express 12 1383

    [10]

    Norihiko N, Atsushi M 2007 Opt. Lett. 32 3516

    [11]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, Etchepare J 2005 Opt. Lett. 30 8

    [12]

    Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese)[刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 59 7036]

    [13]

    Röde C, Heyer M, Behmke M, Kübel M, Jäckel O, Ziegler W, Ehrt D, Kaluza M C, Paulus G G 2011 Appl. Phys. B 103 295

    [14]

    Anna L, Tiberio C, Pascal D O, Fabrice R, Michel P, Fabien Q, Pascal M, Michel B, Hervé L, Philippe M 2007 Opt. Lett. 32 310

    [15]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 7

    [16]

    Chvykov V, Rousseau P, Reed S, Kalinchenko G, Yanovsky V 2006 Opt. Lett. 31 1456

    [17]

    Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X, Xu Z Z 2014 Opt. Commun. 313 175

    [18]

    Lureau F, Laux S, Casagrande O, Radier C, Chalus O, Caradec F, Simon-Boisson C 2012 Proc. SPIE 8235 823513

    [19]

    Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 Rev. Sci. Instrum. 84, 043106

    [20]

    Lliev M, Meier A K, Greco M, Durfee C G 2015 Appl. Opt. 54 2

    [21]

    Jullien A, Canova L, Albert O, Boschetto D, Antonucci L, Cha Y H, Rousseau J P, Chaudet P, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2007 Appl. Phys. B 87 595

    [22]

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602 (in Chinese)[李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 64 020602]

    [23]

    Shang Y, Zhu K, Lin C, Lu H Y, Zou Y B, Zhao Y Y, Shou Y R, Cao C, Zhao S, Geng Y X, Zhu J, Fu H Z, Wang H Y, Lu Y R, Yuan Z X, Guo Z Y, Chen J E, Yan X Q 2013 Sci. Sin.:Phys. Mech. Astron. 43 1282 (in Chinese)[尚勇, 朱昆, 林晨, 卢海洋, 邹宇斌, 赵研英, 寿寅任, 曹超, 赵栓, 耿易新, 祝娇, 符合振, 王洪勇, 陆元荣, 袁忠喜, 郭之虞, 陈佳洱, 颜学庆 2013 中国科学:物理学 力学 天文学 43 1282]

    [24]

    Yan X Q, Lin C, Lu H Y, Zhu K, Zou Y B, Wang H Y, Liu B, Zhao S, Zhu J, Geng Y X, Fu H Zh, Shang Y, Cao C, Shou Y R, Song W, Lu Y R, Yuan Z X, Guo Z Y, He X T, Chen J E 2013 Front. Phys. 8 577

  • [1] Guo Zhuang, Ouyang Feng, Lu Zhi-Zhou, Wang Meng-Yu, Tan Qing-Gui, Xie Cheng-Feng, Wei Bin, He Xing-Dao. Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator. Acta Physica Sinica, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] Zhang Peng, Teng Hao, Yang Hao, Lü Ren-Chong, Wang Ke-Jian, Zhu Jiang-Feng, Wei Zhi-Yi. Herriott multi-pass block material stretcher and grism compressor in chirped-pulse amplification. Acta Physica Sinica, 2022, 71(11): 114202. doi: 10.7498/aps.71.20212381
    [3] Wang Nan, Ruan Shuang-Chen. Analytical algorithem of stretcher dispersion in chirp pulse amplification laser system. Acta Physica Sinica, 2020, 69(2): 024201. doi: 10.7498/aps.69.20191587
    [4] Li Rong-Feng, Xue Xing-Tai, Zhao Yan-Ying, Geng Yi-Xing, Lu Hai-Yang, Yan Xue-Qing, Chen Jia-Er. High efficiency cross-polarized wave filter for non-vacuum transmission. Acta Physica Sinica, 2017, 66(15): 150601. doi: 10.7498/aps.66.150601
    [5] Shi Lei, Ma Ting, Wu Hao-Yu, Sun Qing, Ma Jin-Dong, Lu Qiao, Mao Qing-He. Output pulse compressibility of the chirped pulse fiber amplification based on the dissipative solitons. Acta Physica Sinica, 2016, 65(8): 084203. doi: 10.7498/aps.65.084203
    [6] Li Ke-Wu, Wang Zhi-Bin, Yang Chang-Qing, Zhang Rui, Wang Yao-Li, Song Yan-Peng. A new technique of full polarization hyperspectral imaging based on acousto-optic tunable filter and liquid crystal variable retarder. Acta Physica Sinica, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [7] Zhang Wei, Teng Hao, Wang Zhao-Hua, Shen Zhong-Wei, Liu Cheng, Wei Zhi-Yi. A ring Ti:sapphire regenerative amplifier for high energy chirped pulse amplification. Acta Physica Sinica, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [8] Guo Shu-Yan, Ye Peng, Teng Hao, Zhang We, Li De-Hua, Wang Zhao-Hua, Wei Zhi-Yi. A reflective grism pair stretcher for chirped pulse amplification. Acta Physica Sinica, 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [9] Chen Chuan-Wen, Xiang Yang. Crossings of Lamb modes in lead zinc niobate-lead titanate crystal plates. Acta Physica Sinica, 2012, 61(10): 107701. doi: 10.7498/aps.61.107701
    [10] Ge Xu-Lei, Ma Jing-Long, Zheng Yi, Lu Xin, Jiang Gang, Li Yu-Tong, Wei Zhi-Yi, Zhang Jie. Chirped pulse amplification of femtosecond pulse sequences in a Ti: sapphire laser. Acta Physica Sinica, 2012, 61(21): 214206. doi: 10.7498/aps.61.214206
    [11] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [12] Wang Jian-Zhou, Huang Yan-Sui, Xu Yi, Li Yan-Yan, Lu Xiao-Ming, Leng Yu-Xin. Experimental research and application of pulse clean technique based on cross polarized wave generation. Acta Physica Sinica, 2012, 61(9): 094214. doi: 10.7498/aps.61.094214
    [13] Liu Cheng, Wang Zhao-Hua, Li Wei-Chang, Liu Feng, Wei Zhi-Yi. Enhancement of contrast ratio in chirped pulse amplified laser system by cross-polarized wave generation. Acta Physica Sinica, 2010, 59(10): 7036-7040. doi: 10.7498/aps.59.7036
    [14] Zhao Chao-Ying, Tan Wei-Han. Quantum fluctuations of the optical parametric amplification system under the consideration of dispersion. Acta Physica Sinica, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [15] Xie Xu-Dong, Zhu Qi-Hua, Zeng Xiao-Ming, Wang Xiao, Huang Xiao-Jun, Zuo Yan-Lei, Zhang Ying, Zhou Kai-Nan, Huang Zheng. Generation of 100-J sub-picosecond laser pulse in high energy Nd:glass chirped pulse amplification system. Acta Physica Sinica, 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [16] Feng Wei-Wei, Lin Li-Huang, Wang Wen-Yao, Li Ru-Xin, Wang Li-Chun. Generation of chirped pulses at high repetition rate with a Ti:sapphire regenerative amplifier. Acta Physica Sinica, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [17] Bu Yang, Wang Xiang-Zhao. Suppression of pulse impairments due to cross-phase modulation by frequency domain phase conjugation. Acta Physica Sinica, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [18] He Shou-Jie, Chen Qi-Dai, Li Xue-Chen, Ai Xi-Cheng, Zhang Jian-Ping, Wang Long. The light pulses and the spectra of conical bubbles sonoluminescence. Acta Physica Sinica, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [19] Sun Zhen-Hong, Chai Lu, Zhang Zhi-Gang, Wang Qing-Yue, Zhang Wei-Li, Yuan Xiao-Dong, Huang Xiao-Jun. Mutual compensation of higher-order dispersion in chirped pulse amplifier with a Martinez stretcher. Acta Physica Sinica, 2005, 54(2): 777-781. doi: 10.7498/aps.54.777
    [20] Zhu Peng-Fei, Qian Lie-Jia, Xue Shao-Lin, Lin Zun-Qi. Numerical studies of characteristics and the design of 1PW optical parametric chirped pulse amplifier for the “Shenguang-Ⅱ” facility. Acta Physica Sinica, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
Metrics
  • Abstract views:  5761
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2016
  • Accepted Date:  07 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map