Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new approach for influence maximization in complex networks

Hu Qing-Cheng Zhang Yong Xu Xin-Hui Xing Chun-Xiao Chen Chi Chen Xin-Hua

Citation:

A new approach for influence maximization in complex networks

Hu Qing-Cheng, Zhang Yong, Xu Xin-Hui, Xing Chun-Xiao, Chen Chi, Chen Xin-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Influence maximization modeling and analyzing is a critical issue in social network analysis in a complex network environment, and it can be significantly beneficial to both theory and real life. Given a fixed number k, how to find the set size k which has the greatest influencing scope is a combinatory optimization problem that has been proved to be NP-hard by Kempe et al. (2003). State-of-the-art random algorithm, although it is computation efficient, yields the worst performance; on the contrary, the well-studied greedy algorithms can achieve approximately optimal performance but its computing complexity is prohibitive for large social network; meanwhile, these algorithms should first acquire the global information (topology) of the network which is impractical for the colossal and forever changing network. We propose a new algorithm for influence maximization computing-RMDN and its improved version RMDN++. RMDN uses the information of a randomly chosen node and its nearest neighboring nodes which can avoid the procedure of knowing knowledge of the whole network. This can greatly accelerate the computing process, but its computing complexity is limited to the order of O(klog(n)). We use three different real-life datasets to test the effectiveness and efficiency of RMDN in IC model and LT model respectively. Result shows that RMDN has a comparable performance as the greedy algorithms, but obtains orders of magnitude faster according to different network; in the meantime, we have systematically and theoretically studied and proved the feasibility of our method. The wider applicability and stronger operability of RMDN may also shed light on the profound problem of influence maximization in social network.
      Corresponding author: Hu Qing-Cheng, hqc10@mails.tsinghua.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB3023302), and the National High Technology Research and Development Program of China (Grant No. SS2015AA020102).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabsi A L, Albert R 1999 Science 286 509

    [3]

    Barabsi A L, Albert R, Jeong H, Bianconi G 2000 Science 287 2115a

    [4]

    L, L, Zhang Y C, Yeung C H, Zhou T 2011 PloSone 6 e21202

    [5]

    Hu Q C, Yin Y S, Ma P F 2013 Acta Phys. Sin 62 140101(in Chinese) [胡庆成, 尹龑燊, 马鹏斐 2013 62 140101]

    [6]

    Ren Z M, Shao F, Liu J G 2013 Acta Phys. Sin 62 128901(in Chinese) [任卓明, 邵凤, 刘建国 2013 62 128901]

    [7]

    Aral S, Walker D 2012 Science 337 337

    [8]

    Liu J G, Ren Z M, Guo Q 2013 Physica A: Statistical Mechanics and its Applications 392 4154

    [9]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nature Physics 6 888

    [10]

    Ren X L, L L Y 2014 Chin. Sci. Bull. 59 1175(in Chinese) [任晓龙, 吕琳媛 2014 科学通报 59 1175]

    [11]

    Liu J G, Ren Z M, Guo Q, et al 2013 Acta Phys. Sin. 62 178901(in Chinese) [刘建国, 任卓明, 郭强 等 2013 62 178901]

    [12]

    Domingos P, Richardson M 2001 Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining San Francisco, CA, USA, August 26-29, 2001 p57

    [13]

    Richardson M, Domingos P 2002 Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining Edmonton, Alberta, Canada, July 23-26, 2002 p61

    [14]

    DKempe, JKleinberg, ETardos 2003 Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining New Washington, DC, USA, August 24-27, 2003 p137

    [15]

    Leskovec J, Krause A, Guestrin C 2007 Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining San Jose, CA August 12-15, 2007 p420

    [16]

    Goyal A, Lu W, Lakshmanan L V S 2011 Proceedings of the 20th international conference companion on World wide web Johannesburg,South Africa Sep 14-16, 2011 p47

    [17]

    Zhou C, Zhang P, Guo J 2013 Data Mining (ICDM),2013 IEEE 13th International Conference on. IEEE Dallas, Texas, USA Dec 8-11, 2013 p907

    [18]

    Chen W, Wang Y, Yang S2009 Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining Paris, France June 28-July 1, 2009 p199

    [19]

    Kimura M, Saito K 2006 Knowledge-Based Intelligent Information and Engineering Systems Bournemouth U K, October 9-11, 2006 p937

    [20]

    Chen W, Wang C, Wang Y 2010 Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data miningWashingtonDC, USA, July 25-28, 2010 p1029

    [21]

    Wang Y, Cong G, Song G 2010 Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data miningWashington DC, USA, July 25-28, 2010 p1039

    [22]

    Galstyan A, Musoyan V, Cohen P 2009 Phys. Rev. E 79 056102

    [23]

    Li D, Xu Z M, Chakraborty N 2014 PloS one 9 e102199

    [24]

    Zhou S, Mondragn R J 2004 Commun. Lett. 8 180

    [25]

    Bonacich P 1972 Journal of Mathematical Sociology 2 113

    [26]

    Milgram S 2003 Phys. Rev. Lett. 90 058701

    [27]

    Backstrom L, Boldi P, Rosa M, Ugander J, Vigna S 2012 ACM Web Science 2012: Conference Proceedings Evanston, Illinois, USA, June 2224, 2012 p45

    [28]

    Six Degrees of Separation, Twitter Style fromSysomos Apr 30, 2010

    [29]

    Cohen R, Havlin S 2003 Phys. Rev. Lett. 90 058701

    [30]

    Newman M E J, Strogatz S H, Watts D J 2001 Phys. Rev. E 64 026118

    [31]

    Leskovec J, Mcauley J J 2012 Advances in neural information processing systems South Lake Tahoe, Nevada, United States, December 3-6, 2012 p539

    [32]

    Xie N 2006 Social network analysis of blogs M.Sc. Dissertation, University of Bristol

    [33]

    Li G, Chen S, Feng J 2014 Proceedings of the 2014 ACM SIGMOD international conference on Management of data New York, NY, USA, June 22-25, 2014 p87

    [34]

    Clauset A, Shalizi C R, Newman M E J 2009 SIAM Rev. 51 661

    [35]

    Barabsi A L, Albert R, Jeong H 1999 Physica A 272 173

    [36]

    Newman M E J 2005 Contemporary Physics 46 323

  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabsi A L, Albert R 1999 Science 286 509

    [3]

    Barabsi A L, Albert R, Jeong H, Bianconi G 2000 Science 287 2115a

    [4]

    L, L, Zhang Y C, Yeung C H, Zhou T 2011 PloSone 6 e21202

    [5]

    Hu Q C, Yin Y S, Ma P F 2013 Acta Phys. Sin 62 140101(in Chinese) [胡庆成, 尹龑燊, 马鹏斐 2013 62 140101]

    [6]

    Ren Z M, Shao F, Liu J G 2013 Acta Phys. Sin 62 128901(in Chinese) [任卓明, 邵凤, 刘建国 2013 62 128901]

    [7]

    Aral S, Walker D 2012 Science 337 337

    [8]

    Liu J G, Ren Z M, Guo Q 2013 Physica A: Statistical Mechanics and its Applications 392 4154

    [9]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nature Physics 6 888

    [10]

    Ren X L, L L Y 2014 Chin. Sci. Bull. 59 1175(in Chinese) [任晓龙, 吕琳媛 2014 科学通报 59 1175]

    [11]

    Liu J G, Ren Z M, Guo Q, et al 2013 Acta Phys. Sin. 62 178901(in Chinese) [刘建国, 任卓明, 郭强 等 2013 62 178901]

    [12]

    Domingos P, Richardson M 2001 Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining San Francisco, CA, USA, August 26-29, 2001 p57

    [13]

    Richardson M, Domingos P 2002 Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining Edmonton, Alberta, Canada, July 23-26, 2002 p61

    [14]

    DKempe, JKleinberg, ETardos 2003 Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining New Washington, DC, USA, August 24-27, 2003 p137

    [15]

    Leskovec J, Krause A, Guestrin C 2007 Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining San Jose, CA August 12-15, 2007 p420

    [16]

    Goyal A, Lu W, Lakshmanan L V S 2011 Proceedings of the 20th international conference companion on World wide web Johannesburg,South Africa Sep 14-16, 2011 p47

    [17]

    Zhou C, Zhang P, Guo J 2013 Data Mining (ICDM),2013 IEEE 13th International Conference on. IEEE Dallas, Texas, USA Dec 8-11, 2013 p907

    [18]

    Chen W, Wang Y, Yang S2009 Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining Paris, France June 28-July 1, 2009 p199

    [19]

    Kimura M, Saito K 2006 Knowledge-Based Intelligent Information and Engineering Systems Bournemouth U K, October 9-11, 2006 p937

    [20]

    Chen W, Wang C, Wang Y 2010 Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data miningWashingtonDC, USA, July 25-28, 2010 p1029

    [21]

    Wang Y, Cong G, Song G 2010 Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data miningWashington DC, USA, July 25-28, 2010 p1039

    [22]

    Galstyan A, Musoyan V, Cohen P 2009 Phys. Rev. E 79 056102

    [23]

    Li D, Xu Z M, Chakraborty N 2014 PloS one 9 e102199

    [24]

    Zhou S, Mondragn R J 2004 Commun. Lett. 8 180

    [25]

    Bonacich P 1972 Journal of Mathematical Sociology 2 113

    [26]

    Milgram S 2003 Phys. Rev. Lett. 90 058701

    [27]

    Backstrom L, Boldi P, Rosa M, Ugander J, Vigna S 2012 ACM Web Science 2012: Conference Proceedings Evanston, Illinois, USA, June 2224, 2012 p45

    [28]

    Six Degrees of Separation, Twitter Style fromSysomos Apr 30, 2010

    [29]

    Cohen R, Havlin S 2003 Phys. Rev. Lett. 90 058701

    [30]

    Newman M E J, Strogatz S H, Watts D J 2001 Phys. Rev. E 64 026118

    [31]

    Leskovec J, Mcauley J J 2012 Advances in neural information processing systems South Lake Tahoe, Nevada, United States, December 3-6, 2012 p539

    [32]

    Xie N 2006 Social network analysis of blogs M.Sc. Dissertation, University of Bristol

    [33]

    Li G, Chen S, Feng J 2014 Proceedings of the 2014 ACM SIGMOD international conference on Management of data New York, NY, USA, June 22-25, 2014 p87

    [34]

    Clauset A, Shalizi C R, Newman M E J 2009 SIAM Rev. 51 661

    [35]

    Barabsi A L, Albert R, Jeong H 1999 Physica A 272 173

    [36]

    Newman M E J 2005 Contemporary Physics 46 323

  • [1] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] Li Xin, Zhao Cheng-Li, Liu Yang-Yang. Distinguishing node propagation influence by expected index of finite step propagation range. Acta Physica Sinica, 2020, 69(2): 028901. doi: 10.7498/aps.69.20191313
    [3] Yang Li, Song Yu-Rong, Li Yin-Wei. Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics. Acta Physica Sinica, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [4] Zhou Jian, Jia Zhen, Li Ke-Zan. Improved algorithm of spectral coarse graining method of complex network. Acta Physica Sinica, 2017, 66(6): 060502. doi: 10.7498/aps.66.060502
    [5] Su Zhen, Gao Chao, Li Xiang-Hua. Analysis of the effect of node centrality on diffusion mode in complex networks. Acta Physica Sinica, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [6] Xiao Yun-Peng, Li Song-Yang, Liu Yan-Bing. An information diffusion dynamic model based on social influence and mean-field theory. Acta Physica Sinica, 2017, 66(3): 030501. doi: 10.7498/aps.66.030501
    [7] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [8] Li Yong-Jun, Yin Chao, Yu Hui, Liu Zun. Link prediction in microblog retweet network based on maximum entropy model. Acta Physica Sinica, 2016, 65(2): 020501. doi: 10.7498/aps.65.020501
    [9] Wang Xiao-Juan, Song Mei, Guo Shi-Ze, Yang Zi-Long. Information spreading in correlated microblog reposting network based on directed percolation theory. Acta Physica Sinica, 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [10] Min Lei, Liu Zhi, Tang Xiang-Yang, Chen Mao, Liu San-Ya. Evaluating influential spreaders in complex networks by extension of degree. Acta Physica Sinica, 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [11] Wang Jin-Long, Liu Fang-Ai, Zhu Zhen-Fang. An information spreading model based on relative weight in social network. Acta Physica Sinica, 2015, 64(5): 050501. doi: 10.7498/aps.64.050501
    [12] Liu Shu-Xin, Ji Xin-Sheng, Liu Cai-Xia, Guo Hong. A complex network evolution model for network growth promoted by information transmission. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [13] Hu Qing-Cheng, Yin Yan-Shen, Ma Peng-Fei, Gao Yang, Zhang Yong, Xing Chun-Xiao. A new approach to identify influential spreaders in complex networks. Acta Physica Sinica, 2013, 62(14): 140101. doi: 10.7498/aps.62.140101
    [14] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [15] Lü Tian-Yang, Xie Wen-Yan, Zheng Wei-Min, Piao Xiu-Feng. Analysis of community evaluation criterion and discovery algorithm of weighted complex network. Acta Physica Sinica, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [16] Wang Ya-Qi, Jiang Guo-Ping. Epidemic spreading in complex networks with spreading delay based on cellular automata. Acta Physica Sinica, 2011, 60(8): 080510. doi: 10.7498/aps.60.080510
    [17] Zhang Yan-Chao, Liu Yun, Zhang Hai-Feng, Cheng Hui, Xiong Fei. The research of information dissemination model on online social network. Acta Physica Sinica, 2011, 60(5): 050501. doi: 10.7498/aps.60.050501
    [18] Wang Dan, Yu Hao, Jing Yuan-Wei, Jiang Nan, Zhang Si-Ying. Study on the congestion in complex network based on traffic awareness algorithm. Acta Physica Sinica, 2009, 58(10): 6802-6808. doi: 10.7498/aps.58.6802
    [19] Li Ming-Jie, Wu Ye, Liu Wei-Qing, Xiao Jing-Hua. Short message spreading in complex networks and longevity of short message. Acta Physica Sinica, 2009, 58(8): 5251-5258. doi: 10.7498/aps.58.5251
    [20] Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
Metrics
  • Abstract views:  8779
  • PDF Downloads:  661
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2014
  • Accepted Date:  10 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map