Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performances of thermoelectric module under solar Fresnel concentration

Xu Qiang-Qiang Ji Xu Li Ming Liu Jia-Xing Li Hai-Li

Citation:

Performances of thermoelectric module under solar Fresnel concentration

Xu Qiang-Qiang, Ji Xu, Li Ming, Liu Jia-Xing, Li Hai-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using Fresnel concentration to collect solar irradiation, the hot-end temperature of the semiconductor thermoelectric generator is enhanced, and the cold end is cooled through a radiator in air. For studying the performance of thermoelectric module under solar Fresnel concentration, a theoretical model of thermoelectric generator under steady condition is built from the perspective of energy flux. The model neglects the convection and radiation heat transfer between the cold and hot end and between the arms, and simplifies the heat conduction only along the arm. Utilizing this model, the temperature gradient on thermoelectric generator (dT/dx), the output current (I), the output voltage (V), and the output power (P) of thermoelectric generator are derived, and the influences of the resistance ratio a(=R/RH2) and the temperature difference ratio b(=T/TH2) on generator output performance under a certain structure parameters of thermoelectric generator are discussed. The results show that with the increase of resistance ratio (a), the output current (I) decreases, however the output power (P) and the conversion efficiency (he) first increase, then decreases. When the resistance ratio a=1, the output power (P) and the conversion efficiency (he) reach their maximum values. When the resistance ratio (a) is smaller, the output power (P) increases rapidly with the increase of the resistance ratio (a). When the resistance ratio (a) is larger, the output power (P) decreases slowly with the increase of the resistance ratio (a). With the increase of temperature difference ratio (b), the output power (P) and the conversion efficiency (he) increase, no matter what the value of the resistance ratio (a) is. It verifies the sensitivity of the output power (P) to the temperature difference. Therefore, with a certain figure of merit, the appropriate adjustment of temperature difference ratio (b) may improve the output power (P) and the conversion efficiency (he). Besides, the load residence should be larger than the internal residence for keeping the high output performance. A Fresnel concentration thermoelectric module, including 6 thermoelectric generators, is employed to experimentally explore its output performances. In experiment, the energy flux density on the surface of the thermoelectric generator is not uniform as desired. The uneven hot-end temperature will degrade the conversion efficiency, and even excessive local temperature may damage the semiconductor thermoelectric generator. A deviation of the thermoelectric generator from the focal plane of Fresnel lens will help to improve the energy flux uniformity and achieve an optimized output characteristics. The required output voltage and output power can be obtained through series/parallel connection of these thermoelectric generators. With the series connection of the thermoelectric generators, the output current is increased. With the parallel connection of the thermoelectric generators, the output voltage is increased.
      Corresponding author: Ji Xu, jixu@ynnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51106134) and 2014 National Students' Innovation and Entrepreneurship Training Program Funded Projects, China (Grant No. 201410681005).
    [1]

    Jia H M, Li J Y, Yang M 2015 J. New Ind. 5 34

    [2]

    Cheng F Q, Hong Y J, Zhu C 2014 High Vol. Eng. 40 1599

    [3]

    Zhang X D, Du Q G, Jiang X Q 2011 Power Technol. 35 422

    [4]

    Jiang M B, Wu Z X, Zhou M, Huang R J, Li L F 2010 Acta Phys. Sin. 59 7314 (in Chinese)[蒋明波, 吴智雄, 周敏, 黄荣进, 李来风2010 59 7314]

    [5]

    Amatya R, Ram R J 2012 J. Electron. Mater. 41 1011

    [6]

    Ren G S, Zhu Y D, Qiu X T 2010 Sci. Technol. Consul. Her. 6 22

    [7]

    Mao J N, Jiang S F, Fang Q, Lu J X, Liu D Y, Du J Y 2015 J. Zhejiang University 49 2205

    [8]

    Liu Y S, Gu M A, Yang J J, Shi Q G, Gao T, Yang J H 2010 Acta Phys. Sin. 59 7368 (in Chinese)[刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕2010 59 7368]

    [9]

    Wang L S, Liang Q Y, Li L, Ding X Z, Tang L J 2015 T. Chin. Soc. Agr. Eng. 31 64

    [10]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [11]

    Li P, Cai L L, Zhai P C, Tang X, Zhang Q Z, Niino M 2010 J. Electron. Mater. 39 1522

    [12]

    Zhao Z L, Xu L Z, Yang T Q, Cui Q H 2010 Acta Energ. Solar Sin. 31 620 (in Chinese)[赵在理, 徐林志, 杨天麒, 崔清华2010太阳能学报31 620]

    [13]

    Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X W, Wang D Z, Muto A, Mcenaney K, Chiesa M, Ren Z F, Chen G 2011 Nat. Mater. 10 532

    [14]

    Wang C Y, Li Y Z, Z J 2016 J. Refrig. 37 106

    [15]

    Liang G W, Zhou J M, Huang X Z 2011 Appl. Energy 88 5193

    [16]

    Xu L Z, Li Y, Yang Z, Chen C H 2010 J. Tsinghua University 50 287 (in Chinese)[徐立珍, 李彦, 杨知, 陈昌和2010清华大学学报50 287]

    [17]

    Wei J T, Xiong L C, Wang H 2012 Energ. Procedia 17 1570

    [18]

    Rezania A, Rosendahl L A, Yin H 2014 J. Power Sources 255 151

    [19]

    He W, Su Y H, Riffat S B, Hou J X, Ji J 2011 Appl. Energy 88 5083

    [20]

    Najafi H, Woodbury K A 2013 Sol. Energy 91 152

    [21]

    Rabari R, Mahmud S, Dutta A 2015 Int. J. Heat Mass Transfer 91 190

    [22]

    Montecucco A, Siviter J, Knox A R 2014 Appl. Energy 123 47

    [23]

    Kim S 2013 Appl. Energy 102 1458

    [24]

    Hakimi I, Nikulshin Y, Wolfus S, Yeshurun Y 2016 Cryogenics 75 1

    [25]

    Ali S A, Mazumder S 2013 Int. J. Heat Mass Transfer 62 373

  • [1]

    Jia H M, Li J Y, Yang M 2015 J. New Ind. 5 34

    [2]

    Cheng F Q, Hong Y J, Zhu C 2014 High Vol. Eng. 40 1599

    [3]

    Zhang X D, Du Q G, Jiang X Q 2011 Power Technol. 35 422

    [4]

    Jiang M B, Wu Z X, Zhou M, Huang R J, Li L F 2010 Acta Phys. Sin. 59 7314 (in Chinese)[蒋明波, 吴智雄, 周敏, 黄荣进, 李来风2010 59 7314]

    [5]

    Amatya R, Ram R J 2012 J. Electron. Mater. 41 1011

    [6]

    Ren G S, Zhu Y D, Qiu X T 2010 Sci. Technol. Consul. Her. 6 22

    [7]

    Mao J N, Jiang S F, Fang Q, Lu J X, Liu D Y, Du J Y 2015 J. Zhejiang University 49 2205

    [8]

    Liu Y S, Gu M A, Yang J J, Shi Q G, Gao T, Yang J H 2010 Acta Phys. Sin. 59 7368 (in Chinese)[刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕2010 59 7368]

    [9]

    Wang L S, Liang Q Y, Li L, Ding X Z, Tang L J 2015 T. Chin. Soc. Agr. Eng. 31 64

    [10]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [11]

    Li P, Cai L L, Zhai P C, Tang X, Zhang Q Z, Niino M 2010 J. Electron. Mater. 39 1522

    [12]

    Zhao Z L, Xu L Z, Yang T Q, Cui Q H 2010 Acta Energ. Solar Sin. 31 620 (in Chinese)[赵在理, 徐林志, 杨天麒, 崔清华2010太阳能学报31 620]

    [13]

    Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X W, Wang D Z, Muto A, Mcenaney K, Chiesa M, Ren Z F, Chen G 2011 Nat. Mater. 10 532

    [14]

    Wang C Y, Li Y Z, Z J 2016 J. Refrig. 37 106

    [15]

    Liang G W, Zhou J M, Huang X Z 2011 Appl. Energy 88 5193

    [16]

    Xu L Z, Li Y, Yang Z, Chen C H 2010 J. Tsinghua University 50 287 (in Chinese)[徐立珍, 李彦, 杨知, 陈昌和2010清华大学学报50 287]

    [17]

    Wei J T, Xiong L C, Wang H 2012 Energ. Procedia 17 1570

    [18]

    Rezania A, Rosendahl L A, Yin H 2014 J. Power Sources 255 151

    [19]

    He W, Su Y H, Riffat S B, Hou J X, Ji J 2011 Appl. Energy 88 5083

    [20]

    Najafi H, Woodbury K A 2013 Sol. Energy 91 152

    [21]

    Rabari R, Mahmud S, Dutta A 2015 Int. J. Heat Mass Transfer 91 190

    [22]

    Montecucco A, Siviter J, Knox A R 2014 Appl. Energy 123 47

    [23]

    Kim S 2013 Appl. Energy 102 1458

    [24]

    Hakimi I, Nikulshin Y, Wolfus S, Yeshurun Y 2016 Cryogenics 75 1

    [25]

    Ali S A, Mazumder S 2013 Int. J. Heat Mass Transfer 62 373

  • [1] Han Fei, Jiang Zhou, Wang Chen, Zhou Hua, Shen Xiang-Qian. Optical enhancement of perovskite solar cells by metallic nano-patterns. Acta Physica Sinica, 2024, 73(16): 168801. doi: 10.7498/aps.73.20240607
    [2] Zhang Xiao-Li, Wang Qing-Wei, Yao Wen-Xiu, Shi Shao-Ping, Zheng Li-Ang, Tian Long, Wang Ya-Jun, Chen Li-Rong, Li Wei, Zheng Yao-Hui. Influence of thermal lens effect on second harmonic process in semi-monolithic cavity scheme. Acta Physica Sinica, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] Zhang Kong, Bai Jian-Dong, He Jun, Wang Jun-Min. Influence of laser linewidth on the conversion efficiency of single-pass frequency doubling with a PPMgO: LN crystal. Acta Physica Sinica, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [4] Liu Yong-Bo, Jian Yong-Jun. Electrokinetic energy conversion efficiency in a polyelectrolyte-grafted nanotube. Acta Physica Sinica, 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [5] Wang Chang-Hong, Lin Tao, Zeng Zhi-Huan. Analysis and simulation of semiconductor thermoelectric power generation process. Acta Physica Sinica, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [6] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Wang Xue-Yan. Effect of carbon nanotubes on the properties of polymer MOPPV-PbSe quantum dot composites. Acta Physica Sinica, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [7] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [8] Li Pei-Li, Shi Wei-Hua, Huang De-Xiu, Zhang Xin-Liang. Theoretical investigation of orthogonal dual-pump four-wave mixing in semiconductor optical amplifier. Acta Physica Sinica, 2012, 61(8): 084209. doi: 10.7498/aps.61.084209
    [9] Xu Jiang-Ming, Leng Jin-Yong, Han Kai, Zhou Pu, Hou Jing. Experimental research on single-frequency fiber Raman amplifier. Acta Physica Sinica, 2012, 61(7): 074204. doi: 10.7498/aps.61.074204
    [10] Xu Jia-Xiong, Yao Ruo-He. Investigation of the photovoltaic performance of n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cell. Acta Physica Sinica, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [11] Li Yu-Tong, Liu Feng, Zhang Yi, Lin Xiao-Xuan, Wang Shou-Jun, Wang Zhao-Hua, Li Ying-Jun, Sheng Zheng-Ming, Xu Miao-Hua, Wei Zhi-Yi, Zhang Jie, Zheng Jun, Meng Li-Min. Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Physica Sinica, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [12] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [13] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [14] Zhou Cheng, Gao Yan-Xia, Wang Pei-Ji, Zhang Zhong, Li Ping. Theoretical analysis of second-harmonic conversion efficiency in negative-index materials. Acta Physica Sinica, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [15] Cai Yi, Wang Wen-Tao, Yang Ming, Liu Jian-Sheng, Lu Pei-Xiang, Li Ru-Xin, Xu Zhi-Zhan. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab. Acta Physica Sinica, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [16] Hu Da-Wei, Wang Zheng-Ping, Zhang Huai-Jin, Xu Xin-Guang, Wang Ji-Yang, Shao Zong-Shu. Stimulated Raman scattering of YbVO4 crystal. Acta Physica Sinica, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [17] Xu Miao-Hua, Chen Li-Ming, Li Yu-Tong, Yuan Xiao-Hui, Liu Yun-Quan, Kazuhisa Nakajima, Toshi Tajima, Wang Zhao-Hua, Wei Zhi-Yi, Zhao Wei, Zhang Jie. Experimental study on Kα X-ray emission from intense femtosecond laser-solid interactions. Acta Physica Sinica, 2007, 56(1): 353-358. doi: 10.7498/aps.56.353
    [18] Song Hui-Jin, Zheng Jia-Gui, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Li Bing, Wu Li-Li, Lei Zhi, Yan Qiang. Performance of CdTe solar cells with different back electrodes and back contact layers. Acta Physica Sinica, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [19] Simulation of effect of non-uniform input image on characteristics of output image of optical novelty filter based bacteriorhodopsin film. Acta Physica Sinica, 2007, 56(12): 6954-6960. doi: 10.7498/aps.56.6954
    [20] WANG YI-SHAN, CHEN GUO-FU, YU LIAN-JUN, ZHAO SHANG-HONG, ZHAO WEI. GENERATION OF THE HIGH EFFICIENCY HIGH PEAK-POWER FEMTOSECOND BLUE OPTICAL PULSE. Acta Physica Sinica, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
Metrics
  • Abstract views:  5827
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2016
  • Accepted Date:  29 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map