Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chaos control of voltage mode controlled buck-boost converter

Zheng Lian-Qing Peng Yi

Citation:

Chaos control of voltage mode controlled buck-boost converter

Zheng Lian-Qing, Peng Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the limitation to the development level of modern science and technology, DC-DC (where DC stands for direct current) converters operating in chaotic state cannot be used to achieve some desired goals yet and the chaotic phenomena occurring in DC-DC converters are almost restrained. For DC-DC converter operating in continuous conduction mode (CCM), its characteristic has been widely studied, but DC-DC converter needs to operate in discontinuous conduction mode (DCM) at light load. Because if it always works in CCM, the inductor current will be less than zero when the load is light, which will increase conduction loss and reduce conversion efficiency. Moreover, DCM operation is frequently encountered, since power converters are usually required to operate with loads removed. For buck-boost converter, the obvious oscillation will appear when it works under the condition of varying operating point, so it is difficult to control. Considering the reasons above, the voltage mode controlled buck-boost converter operating in DCM is chosen to be studied to verify the validity of the two control methods presented in this paper. Under a certain condition, chaos and bifurcation will occur in the voltage mode controlled buck-boost converter operating in DCM. Having discussed its chaotic phenomenon, in this paper we present two ways to control the system to operate stably in one-cycle state. The first way is the self-controlling delayed feedback control method. The basic idea of this method is to use the difference between the delayed output signal and the output signal to form a feedback signal, and return it to the control circuit in a form of negative feedback to control the output signal. The simulation results show that the self-controlling delayed feedback control method can make the system which has already entered into chaos operate stably in one-cycle state. Besides, its dynamic response speed is fast and it does not change the system frequency. However, this method fails to work when the disturbance is too large. Therefore, the self-controlling delayed feedback control method is more suitable for small disturbance condition. The second way is the improved sliding mode control method. The basic idea of the sliding mode control is to design a switching function to determine a switching surface which represents a desired system dynamics, then, design a variable structure control law to drive any state to reach the switching surface, therefore, the sliding mode takes place and the system follows the desired dynamics. The simulation results show that the improved sliding mode control method can force the system which has already entered into chaos to operate stably in one-cycle state even when the system encounters large disturbance. In addition, although it is more complicated to design, it has great dynamic response characteristics and excellent robustness. Because the methods presented in this paper do not rely on the buck-boost converter itself, both methods can be used to control other DC-DC converters. When the disturbance is small, the self-controlling delayed feedback control method should be considered first, for it is easier to achieve. When the system encounters large disturbances the sliding mode control method has the priority, because this method is valid while the self-controlling delayed feedback control method may fails under such a condition.
      Corresponding author: Peng Yi, 751498430@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577019), and National 111 Project (Grant No. B08036).
    [1]

    Duran E, Andujar J M, Segura F, Barragan A J 2011Appl. Energy 88 1690

    [2]

    Zumoffen D, Basualdo M 2010Comput. Chem. Eng. 34 643

    [3]

    Tse C K 1994IEEE Trans. Circuits Syst. I 41 16

    [4]

    Nusse H E, Yorke J A 1992Physica D 57 39

    [5]

    Nusse H E, Ott E, Yorke J A 1994Phys. Rev. E 45 707

    [6]

    Lzhikevich E M 2000Int. J. Bifurcat. Chaos 10 1171

    [7]

    Zhao G Z, Qi D L 2001Trans. China Electrotech. Soc. 16 77(in Chinese)[赵光宙, 齐冬莲2001电工技术学报16 77]

    [8]

    Ott E, Grebogi C, York J A 1990Phys. Rev. Lett. 64 1196

    [9]

    Pyragas K 1992Phys. Lett. A 170 421

    [10]

    Pyragas K 1993Phys. Lett. A 180 99

    [11]

    Lu W G, Zhou L W, Luo Q M, Du X 2007Trans. China Electrotech. Soc. 22 98(in Chinese)[卢伟国, 周雒维, 罗全明, 杜雄2007电工技术学报22 98]

    [12]

    Alsing P M, Garielides A 1994Phys. Rev. E 49 1225

    [13]

    Lin C T 1999IEEE Trans. on Neural Networks 10 846

    [14]

    Chen L, Chen G R 1999Int. J. Bifurcat. Chaos 9 757

    [15]

    Patidar V, Pareek N K, Sud K K 2002Phys. Lett. A 304 121

    [16]

    Jia M M, Zhang G S, Niu H 2013Acta Phys. Sin. 62 130503(in Chinese)[贾美美, 张国山, 牛弘2013 62 130503]

    [17]

    Zhang F Y, Hu W, Chen X B, Chen H, Tang X M 2015Acta Phys. Sin. 64 048401(in Chinese)[张方樱, 胡维, 陈新兵, 陈虹, 唐雄民2015 64 048401]

    [18]

    Wei Q L, Song R Z, Sun Q Y, Xiao W D 2015Chin. Phys. B 24 090504

    [19]

    Maity S 2013IEEE Trans. Circuits I 60 1657

    [20]

    Chen Q, Nan Y R, Zheng H H, Ren X M 2015Chin. Phys. B 24 110504

    [21]

    Ouyang C L, Yan Y G, Zhang G B 2002Trans. China Electrotech. Soc. 17 53(in Chinese)[欧阳长莲, 严仰光, 章国宝2002电工技术学报17 53]

    [22]

    Erickson W, Maksimovic D 2001Fundamentals of Power Electronics (2nd Ed.) (New York:Kluwer) pp107-108

    [23]

    Wu Y, Huang P Y G, Zhang L, Zhou L W 2015Proc. CSEE 35 1740(in Chinese)[吴宇, 皇甫宜耿, 张琳, 周雒维2015中国电机工程学报35 1740]

    [24]

    Xie L L, Ren X G, Zhuo H Z, Wei J Q 2011J. Electr. Eng. Technol. 6 519

    [25]

    Lin H C, Chang T Y 20077th International Conference on Power Electronics and Drive Systems Taiwan, China 2007 p373

    [26]

    Tan S C, Lai Y M, Cheung M K H, Tse C K 2005IEEE Trans. Power Electron 20 425

  • [1]

    Duran E, Andujar J M, Segura F, Barragan A J 2011Appl. Energy 88 1690

    [2]

    Zumoffen D, Basualdo M 2010Comput. Chem. Eng. 34 643

    [3]

    Tse C K 1994IEEE Trans. Circuits Syst. I 41 16

    [4]

    Nusse H E, Yorke J A 1992Physica D 57 39

    [5]

    Nusse H E, Ott E, Yorke J A 1994Phys. Rev. E 45 707

    [6]

    Lzhikevich E M 2000Int. J. Bifurcat. Chaos 10 1171

    [7]

    Zhao G Z, Qi D L 2001Trans. China Electrotech. Soc. 16 77(in Chinese)[赵光宙, 齐冬莲2001电工技术学报16 77]

    [8]

    Ott E, Grebogi C, York J A 1990Phys. Rev. Lett. 64 1196

    [9]

    Pyragas K 1992Phys. Lett. A 170 421

    [10]

    Pyragas K 1993Phys. Lett. A 180 99

    [11]

    Lu W G, Zhou L W, Luo Q M, Du X 2007Trans. China Electrotech. Soc. 22 98(in Chinese)[卢伟国, 周雒维, 罗全明, 杜雄2007电工技术学报22 98]

    [12]

    Alsing P M, Garielides A 1994Phys. Rev. E 49 1225

    [13]

    Lin C T 1999IEEE Trans. on Neural Networks 10 846

    [14]

    Chen L, Chen G R 1999Int. J. Bifurcat. Chaos 9 757

    [15]

    Patidar V, Pareek N K, Sud K K 2002Phys. Lett. A 304 121

    [16]

    Jia M M, Zhang G S, Niu H 2013Acta Phys. Sin. 62 130503(in Chinese)[贾美美, 张国山, 牛弘2013 62 130503]

    [17]

    Zhang F Y, Hu W, Chen X B, Chen H, Tang X M 2015Acta Phys. Sin. 64 048401(in Chinese)[张方樱, 胡维, 陈新兵, 陈虹, 唐雄民2015 64 048401]

    [18]

    Wei Q L, Song R Z, Sun Q Y, Xiao W D 2015Chin. Phys. B 24 090504

    [19]

    Maity S 2013IEEE Trans. Circuits I 60 1657

    [20]

    Chen Q, Nan Y R, Zheng H H, Ren X M 2015Chin. Phys. B 24 110504

    [21]

    Ouyang C L, Yan Y G, Zhang G B 2002Trans. China Electrotech. Soc. 17 53(in Chinese)[欧阳长莲, 严仰光, 章国宝2002电工技术学报17 53]

    [22]

    Erickson W, Maksimovic D 2001Fundamentals of Power Electronics (2nd Ed.) (New York:Kluwer) pp107-108

    [23]

    Wu Y, Huang P Y G, Zhang L, Zhou L W 2015Proc. CSEE 35 1740(in Chinese)[吴宇, 皇甫宜耿, 张琳, 周雒维2015中国电机工程学报35 1740]

    [24]

    Xie L L, Ren X G, Zhuo H Z, Wei J Q 2011J. Electr. Eng. Technol. 6 519

    [25]

    Lin H C, Chang T Y 20077th International Conference on Power Electronics and Drive Systems Taiwan, China 2007 p373

    [26]

    Tan S C, Lai Y M, Cheung M K H, Tse C K 2005IEEE Trans. Power Electron 20 425

  • [1] Zhang Fang-Ying, Hu Wei, Chen Xin-Bing, Chen Hong, Tang Xiong-Min. Chaos control and anti-control in Boost converter based on altering correlation. Acta Physica Sinica, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401
    [2] Xue Kai-Jia, Wang Cong-Qing. Sliding mode control of fractional order chaotic system based on an online error correction adaptive SVR. Acta Physica Sinica, 2015, 64(7): 070502. doi: 10.7498/aps.64.070502
    [3] Pan Guang, Wei Jing. Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems. Acta Physica Sinica, 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [4] Chen Qiang, Nan Yu-Rong, Xing Ke-Xin. Adaptive sliding-mode control of chaotic permanent magnet synchronous motor system based on extended state observer. Acta Physica Sinica, 2014, 63(22): 220506. doi: 10.7498/aps.63.220506
    [5] Wang Xi, Wang Yu-Hong, Li Xing-Yuan, Miao Miao. Design of the static var compensator adaptive sliding mode controller considering model uncertainty and time-delay. Acta Physica Sinica, 2014, 63(23): 238407. doi: 10.7498/aps.63.238407
    [6] Li Guan-Lin, Li Chun-Yang, Chen Xi-You, Zhang Xiao-Wei. Chaos control of SEPIC converter based on resonant parametric perturbation method. Acta Physica Sinica, 2013, 62(21): 210505. doi: 10.7498/aps.62.210505
    [7] Jia Mei-Mei, Zhang Guo-Shan, Niu Hong. Chaotic control of the Buck converter based on improving the correlation. Acta Physica Sinica, 2013, 62(13): 130503. doi: 10.7498/aps.62.130503
    [8] Lu Yong-Kun. Active adaptive fuzzy integral sliding mode control for unified chaotic system with uncertainties and disturbance. Acta Physica Sinica, 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [9] Li Yu-San, Wei Lin-Ling, Yu Miao, Zhang Meng. Chaos synchronization of regular network based on sliding mode control. Acta Physica Sinica, 2012, 61(12): 120504. doi: 10.7498/aps.61.120504
    [10] Zhang Ruo-Xun, Cao He-Fei. Adaptive synchronization of fractional-order chaotic system via sliding mode control. Acta Physica Sinica, 2011, 60(5): 050510. doi: 10.7498/aps.60.050510
    [11] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [12] Guo Hui-Jun, Liu Ding, Zhao Guang-Zhou. Active radial basis function sliding mode controller for unified chaotic system with disturbance and uncertainties. Acta Physica Sinica, 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [13] Liu Ding, Yan Xiao-Mei. Projective synchronization of fractional-order chaotic systems based on sliding mode control. Acta Physica Sinica, 2009, 58(6): 3747-3752. doi: 10.7498/aps.58.3747
    [14] Liu Fu-Cai, Song Jia-Qiu. Anti-synchronizing different chaotic systems using active sliding mode control. Acta Physica Sinica, 2008, 57(8): 4729-4737. doi: 10.7498/aps.57.4729
    [15] Lu Wei-Guo, Zhou Luo-Wei, Luo Quan-Ming. Output time-delay feedback control of chaos in the voltage-mode BUCK converter. Acta Physica Sinica, 2007, 56(10): 5648-5654. doi: 10.7498/aps.56.5648
    [16] Lu Wei-Guo, Zhou Luo-Wei, Luo Quan-Ming, Du Xiong. Time-delayed feedback control of chaos in BOOST converter and its optimization. Acta Physica Sinica, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [17] Zhang Sheng-Hai, YangHua, Qian Xing-Zhong. A method for controlling hyperchaos of Er-doped fiber laser——Nonlinear time-delay feedback modulating-parameter. Acta Physica Sinica, 2004, 53(11): 3706-3709. doi: 10.7498/aps.53.3706
    [18] Zhou Yu-Fei, Chen Jun-Ning, C.K.Tse, Ke Dao-Ming, Shi Long-Xing, Sun Wei-Feng. Application of resonant parametric perturbation to the chaos control in Boost converter and its optimization. Acta Physica Sinica, 2004, 53(11): 3676-3683. doi: 10.7498/aps.53.3676
    [19] Luo Xiao-Shu, Wang Bing-Hong, Guanrong Chen, Quan Hong-Jun, Fang Jin-Qing, Zou Yan-Li, Jiang Pin-Qun. Research on bifurcation behaviour and chaos control in DC-DC buck converter. Acta Physica Sinica, 2003, 52(1): 12-17. doi: 10.7498/aps.52.12
    [20] Zou Yan-Li, Luo Xiao-Shu, Fang Jin-Qing, Wang Bing-Hong. Using pulse voltage differential feedback method to control chaos in the buck co nverter. Acta Physica Sinica, 2003, 52(12): 2978-2984. doi: 10.7498/aps.52.2978
Metrics
  • Abstract views:  6934
  • PDF Downloads:  334
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2016
  • Accepted Date:  20 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map