搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩张状态观测器的永磁同步电机混沌系统自适应滑模控制

陈强 南余荣 邢科新

引用本文:
Citation:

基于扩张状态观测器的永磁同步电机混沌系统自适应滑模控制

陈强, 南余荣, 邢科新

Adaptive sliding-mode control of chaotic permanent magnet synchronous motor system based on extended state observer

Chen Qiang, Nan Yu-Rong, Xing Ke-Xin
PDF
导出引用
  • 针对部分状态不可测的永磁同步电机混沌系统, 结合自适应滑模控制和扩张状态观测器理论, 提出一种基于扩张状态观测器的永磁同步电机自适应混沌控制方法, 取消了系统所有状态完全可测的限制. 通过坐标变换, 将永磁同步电机混沌模型变为更适宜控制器设计的Brunovsky标准形式. 在系统部分状态和非线性不确定项上界均未知的情况下, 基于扩张状态观测器估计系统未知状态及不确定项, 并设计自适应滑模控制器, 保证系统状态快速稳定收敛至零点. 仿真结果表明, 该控制器能够改善滑模控制的抖振问题以及提高系统鲁棒性.
    An adaptive sliding-mode control scheme based on extended state observer (ESO) is proposed for permanent magnet synchronous motor (PMSM) chaotic system with some immesureable states. The adaptive sliding-mode control and extended state observer theory are combined in the developed controller, and thus the restriction that all the states in the PMSM should be completely measured is canceled. Through a simple coordinate transformation, the PMSM chaotic model is transformed into a Brunovsky canonical form, which is more suitable for the sliding-mode controller design. In the presence of unknown states and upper bound of nonlinear uncertainty, the ESO is employed to estimate the unknown states and the nonlinear uncertainty. Then, the adaptive sliding-mode controller is designed to ensure that the system states can converge to zero rapidly and stably. Simulation results show that the proposed controller can improve the chattering problem of the sliding-mode control and enhance the robustness of the system.
    • 基金项目: 国家自然科学基金(批准号:61403343,61202203)、浙江省自然科学基金(批准号:LZ12E07003,LY12F01023)和浙江省教育厅自然科学基金(批准号:Y201329260)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61403343, 61202203), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LZ12E07003, LY12F01023), and the Scientific Research Foundation of the Education Department of Zhejiang Province, China (Grant No. Y201329260).
    [1]

    Pillay P, Krishnan R 1989 IEEE Trans. Ind. Appl. 25 265

    [2]

    Ooshima M, Chiba A 2004 IEEE Trans. Energy Convers. 19 569

    [3]

    Na J, Chen Q, Ren X M, Guo Y 2014 IEEE Trans. Ind. Electr. 61 486

    [4]

    Jing Z, Yu C, Chen G 2004 Chaos, Soliton. Fract. 22 831

    [5]

    Zhang B, Li Z, Mao Z Y 2002 Contr. Theory Appl. 19 841 (in Chinese) [张波, 李忠, 毛宗源 2002 控制理论与应用 19 841]

    [6]

    Zhang J M, Wang K J 2007 Proc. Chin. Soc. Elec. Eng. 27 7 (in Chinese) [张建民, 王科俊 2007 中国电机工程学报 27 7]

    [7]

    Chen Q, Ren X M 2010 Acta Phys. Sin. 59 2310 (in Chinese) [陈强, 任雪梅 2010 59 2310]

    [8]

    Ren H P, Liu D, Li J 2003 Proc. Chin. Soc. Electr. Eng. 23 175 (in Chinese) [任海鹏, 刘丁, 李洁 2003 中国电机工程学报 23 175]

    [9]

    Wei D Q, Luo X S, Wang B H, Fang J Q 2006 Acta Phys. Sin. 55 54 (in Chinese) [韦笃取, 罗晓曙, 汪秉宏, 方锦清 2006 55 54]

    [10]

    Harb A 2004 Chaos Soliton. Fract. 19 1217

    [11]

    Wei D Q, Luo X S, Wang B H, Fang J Q 2007 Phys. Lett. A 363 71

    [12]

    Loria A 2009 IEEE Trans. Circuit. Syst. I 56 2109

    [13]

    Li C L, Yu S M 2011 Acta Phys. Sin. 60 120505 (in Chinese) [李春来, 禹思敏 2011 60 120505]

    [14]

    Mohammad A, Arash K, Behzad G 2010 Phys. Lett. A 374 4226

    [15]

    Li D, Yang D, Zhang X H, Wang S L 2009 Acta Phys. Sin. 58 1432 (in Chinese) [李东, 杨丹, 张小洪, 王时龙 2009 58 1432]

    [16]

    Chen Q, Ren X M, Na J 2011 Chaos Soliton. Fract. 44 1080

    [17]

    Wei D Q, Zhang B 2009 Chin. Phys. B 18 1399

    [18]

    Tang C S, Dai Y H 2013 Acta Phys. Sin. 62 180504 (in Chinese) [唐传胜, 戴跃洪 2013 62 180504]

    [19]

    Yang G L, Li H G 2009 Acta Phys. Sin. 58 7552 (in Chinese) [杨国良, 李惠光 2009 58 7552]

    [20]

    Liu J K, Sun F C 2007 Control Theory Appl. 24 407 (in Chinese) [刘金琨, 孙富春 2007 控制理论与应用 24 407]

    [21]

    Feng Y, Yu X H, Han F L 2013 IEEE Trans. Ind. Electr. 60 4272

    [22]

    Li S H, Zhou M M, Yu X H 2013 IEEE Trans. Ind. Inform. 9 1879

    [23]

    Frank P, Yuri S, Vincent B, Alexander P 2013 Contr. Eng. Pract. 21 679

    [24]

    Hou L M, Zhang H G, Liu X C, Chu E H, Wang Q 2010 Control and Decision 25 686 (in Chinese) [侯利民, 张化光, 刘秀翀, 褚恩辉, 王强 2010 控制与决策 25 686]

    [25]

    Chen Q, Yu L, Nan Y R 2013 J. Syst. Sci. Complex. 26 940

    [26]

    Han J Q 2008 Active Disturbance Rejection Control Technique-the Techique for Estimating and Compensating the Uncertainties (Bejing: National Defense Industry Press) (in Chinese) [韩京清 2008 自抗扰控制技术——估计补偿不确定因素的控制技术 (北京: 国防工业出版社)]

    [27]

    Li S H, Kai Z, Liu H X 2011 Trans. Institute of Measurement and Control 33 522

    [28]

    Li S H, Yang J, Chen W H, Chen X S 2012 IEEE Trans. Ind. Electr. 59 4792

    [29]

    Zhao J L, Wang J, Wei W 2011 Acta Phys. Sin. 60 100203 (in Chinese) [赵建利, 王京, 魏伟 2011 60 100203]

    [30]

    Xia Y Q, Fu M Y, Deng Z H, Ren X M 2013 Control Theory and Applications 30 137 [夏元清, 付梦印, 邓志红, 任雪梅 2013 控制理论与应用 30 137]

  • [1]

    Pillay P, Krishnan R 1989 IEEE Trans. Ind. Appl. 25 265

    [2]

    Ooshima M, Chiba A 2004 IEEE Trans. Energy Convers. 19 569

    [3]

    Na J, Chen Q, Ren X M, Guo Y 2014 IEEE Trans. Ind. Electr. 61 486

    [4]

    Jing Z, Yu C, Chen G 2004 Chaos, Soliton. Fract. 22 831

    [5]

    Zhang B, Li Z, Mao Z Y 2002 Contr. Theory Appl. 19 841 (in Chinese) [张波, 李忠, 毛宗源 2002 控制理论与应用 19 841]

    [6]

    Zhang J M, Wang K J 2007 Proc. Chin. Soc. Elec. Eng. 27 7 (in Chinese) [张建民, 王科俊 2007 中国电机工程学报 27 7]

    [7]

    Chen Q, Ren X M 2010 Acta Phys. Sin. 59 2310 (in Chinese) [陈强, 任雪梅 2010 59 2310]

    [8]

    Ren H P, Liu D, Li J 2003 Proc. Chin. Soc. Electr. Eng. 23 175 (in Chinese) [任海鹏, 刘丁, 李洁 2003 中国电机工程学报 23 175]

    [9]

    Wei D Q, Luo X S, Wang B H, Fang J Q 2006 Acta Phys. Sin. 55 54 (in Chinese) [韦笃取, 罗晓曙, 汪秉宏, 方锦清 2006 55 54]

    [10]

    Harb A 2004 Chaos Soliton. Fract. 19 1217

    [11]

    Wei D Q, Luo X S, Wang B H, Fang J Q 2007 Phys. Lett. A 363 71

    [12]

    Loria A 2009 IEEE Trans. Circuit. Syst. I 56 2109

    [13]

    Li C L, Yu S M 2011 Acta Phys. Sin. 60 120505 (in Chinese) [李春来, 禹思敏 2011 60 120505]

    [14]

    Mohammad A, Arash K, Behzad G 2010 Phys. Lett. A 374 4226

    [15]

    Li D, Yang D, Zhang X H, Wang S L 2009 Acta Phys. Sin. 58 1432 (in Chinese) [李东, 杨丹, 张小洪, 王时龙 2009 58 1432]

    [16]

    Chen Q, Ren X M, Na J 2011 Chaos Soliton. Fract. 44 1080

    [17]

    Wei D Q, Zhang B 2009 Chin. Phys. B 18 1399

    [18]

    Tang C S, Dai Y H 2013 Acta Phys. Sin. 62 180504 (in Chinese) [唐传胜, 戴跃洪 2013 62 180504]

    [19]

    Yang G L, Li H G 2009 Acta Phys. Sin. 58 7552 (in Chinese) [杨国良, 李惠光 2009 58 7552]

    [20]

    Liu J K, Sun F C 2007 Control Theory Appl. 24 407 (in Chinese) [刘金琨, 孙富春 2007 控制理论与应用 24 407]

    [21]

    Feng Y, Yu X H, Han F L 2013 IEEE Trans. Ind. Electr. 60 4272

    [22]

    Li S H, Zhou M M, Yu X H 2013 IEEE Trans. Ind. Inform. 9 1879

    [23]

    Frank P, Yuri S, Vincent B, Alexander P 2013 Contr. Eng. Pract. 21 679

    [24]

    Hou L M, Zhang H G, Liu X C, Chu E H, Wang Q 2010 Control and Decision 25 686 (in Chinese) [侯利民, 张化光, 刘秀翀, 褚恩辉, 王强 2010 控制与决策 25 686]

    [25]

    Chen Q, Yu L, Nan Y R 2013 J. Syst. Sci. Complex. 26 940

    [26]

    Han J Q 2008 Active Disturbance Rejection Control Technique-the Techique for Estimating and Compensating the Uncertainties (Bejing: National Defense Industry Press) (in Chinese) [韩京清 2008 自抗扰控制技术——估计补偿不确定因素的控制技术 (北京: 国防工业出版社)]

    [27]

    Li S H, Kai Z, Liu H X 2011 Trans. Institute of Measurement and Control 33 522

    [28]

    Li S H, Yang J, Chen W H, Chen X S 2012 IEEE Trans. Ind. Electr. 59 4792

    [29]

    Zhao J L, Wang J, Wei W 2011 Acta Phys. Sin. 60 100203 (in Chinese) [赵建利, 王京, 魏伟 2011 60 100203]

    [30]

    Xia Y Q, Fu M Y, Deng Z H, Ren X M 2013 Control Theory and Applications 30 137 [夏元清, 付梦印, 邓志红, 任雪梅 2013 控制理论与应用 30 137]

  • [1] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制.  , 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [2] 张园, 徐琦, 孙明玮, 陈增强. 基于快速全线性预测控制的混沌系统控制与同步.  , 2015, 64(1): 010502. doi: 10.7498/aps.64.010502
    [3] 吴忠强, 吴昌韩, 赵立儒, 贾文静. 基于哈密顿函数的永磁同步电机混沌系统鲁棒控制.  , 2015, 64(9): 090503. doi: 10.7498/aps.64.090503
    [4] 秦利, 刘福才, 梁利环, 侯甜甜. 基于液体晃动干扰观测器的航天器混沌姿态H∞控制.  , 2014, 63(9): 090502. doi: 10.7498/aps.63.090502
    [5] 王跃钢, 文超斌, 杨家胜, 左朝阳, 崔祥祥. 基于无模型方法的混沌系统自适应控制.  , 2013, 62(10): 100504. doi: 10.7498/aps.62.100504
    [6] 唐传胜, 戴跃洪. 参数不确定永磁同步电机混沌系统的有限时间稳定控制.  , 2013, 62(18): 180504. doi: 10.7498/aps.62.180504
    [7] 赵建利, 王京, 魏伟. Lorenz混沌系统的近似有限时间稳定控制.  , 2011, 60(10): 100203. doi: 10.7498/aps.60.100203
    [8] 李春来, 禹思敏. 永磁同步电动机的自适应混沌控制.  , 2011, 60(12): 120505. doi: 10.7498/aps.60.120505
    [9] 郑刚, 邹见效, 徐红兵, 秦钢. 直驱型永磁同步风力发电机组中混沌运动的反步自适应控制.  , 2011, 60(6): 060506. doi: 10.7498/aps.60.060506
    [10] 来新泉, 李祖贺, 袁冰, 王慧, 叶强, 赵永瑞. 基于自适应斜坡补偿的双环电流模DC/DC混沌控制.  , 2010, 59(4): 2256-2263. doi: 10.7498/aps.59.2256
    [11] 陈强, 任雪梅. 基于多核最小二乘支持向量机的永磁同步电机混沌建模及其实时在线预测.  , 2010, 59(4): 2310-2318. doi: 10.7498/aps.59.2310
    [12] 韦笃取, 张波, 丘东元, 罗晓曙. 基于LaSalle不变集定理自适应控制永磁同步电动机的混沌运动.  , 2009, 58(9): 6026-6029. doi: 10.7498/aps.58.6026
    [13] 杨国良, 李惠光. 直驱式永磁同步风力发电机中混沌运动的滑模变结构控制.  , 2009, 58(11): 7552-7557. doi: 10.7498/aps.58.7552
    [14] 薛薇, 郭彦岭, 陈增强. 永磁同步电机的混沌分析及其电路实现.  , 2009, 58(12): 8146-8151. doi: 10.7498/aps.58.8146
    [15] 李东, 王时龙, 张小洪, 杨丹. 参数不确定永磁同步电机混沌的模糊脉冲控制.  , 2009, 58(5): 2939-2948. doi: 10.7498/aps.58.2939
    [16] 李东, 张小洪, 杨丹, 王时龙. 参数不确定永磁同步电机混沌的模糊控制.  , 2009, 58(3): 1432-1440. doi: 10.7498/aps.58.1432
    [17] 沈启坤, 张天平, 孙 妍. 具有死区和饱和输入的自适应混沌控制.  , 2007, 56(11): 6263-6269. doi: 10.7498/aps.56.6263
    [18] 龚礼华. 基于自适应脉冲微扰实现混沌控制的研究.  , 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
    [19] 董恩增, 陈增强, 袁著祉. 混沌系统的自适应多变量广义预测控制与同步.  , 2005, 54(10): 4578-4583. doi: 10.7498/aps.54.4578
    [20] 姚利娜, 高金峰. 基于状态观测器实现一类混沌系统的控制.  , 2002, 51(3): 487-491. doi: 10.7498/aps.51.487
计量
  • 文章访问数:  7235
  • PDF下载量:  850
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-17
  • 修回日期:  2014-06-29
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map