Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stochastic resonance based on frequency information exchange

Liu Jin-Jun Leng Yong-Gang Lai Zhi-Hui Tan Dan

Citation:

Stochastic resonance based on frequency information exchange

Liu Jin-Jun, Leng Yong-Gang, Lai Zhi-Hui, Tan Dan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the past few decades, stochastic resonance (SR) has attracted considerable attention of researchers due to a curious phenomenon appearing in a nonlinear system:an input weak periodic signal can be amplified and optimized by the assistance of noise. It has been proved that the classical stochastic resonance (CSR) has the adiabatic limit, so the performance of CSR in high-frequency signal detection is restricted in practical engineering. To break the restriction, a number of methods have been suggested, such as re-scaling frequency stochastic resonance (RFSR), parameters normalized stochastic resonance, modulated stochastic resonance, etc. Although the high-frequency signal can be detected by the above methods in specific conditions, there are some problems that restrict their applications in different circumstances. In this paper, a new method, stochastic resonance based on frequency-information exchange (FIESR), is developed to deal with the adiabatic limit of CSR. The mechanism of FIESR is analyzed in detail by the theory of single-side band modulation (SSB) which is based on phase shift. The information in small-parameter frequency domain is swapped with the information of the high-frequency target signal. Then the amplitude and phase of the target signal are moved to the small-parameter frequency domain. Consequently the target signal can be enhanced and detected by CSR in small-parameter frequency domain. Besides, a necessary plan, narrow band spectrum exchange, is put forward to diminish the influence of the spectrum leakage of FIESR. It is well known that the RFSR is a method of detecting the practical signal with large-parameter frequency. Through rescaling the time interval of the signal and compressing its frequency according to the scale R, the large-parameter frequency is compressed into a small-parameter frequency. The RFSR has a good performance in mechanical incipient fault diagnosis. However, it has a high sampling ratio limitation. The ratio of sampling frequency to target signal frequency is more than 50. To overcome this weakness of RFSR, frequency-information exchange (FIE) is introduced into RFSR. A new signal detection method based on FIE and RFSR, named F-RFSR, is put forward simultaneously. The flow of F-RFSR consists of three steps. Firstly, the frequency of the original input signal is compressed linearly according to the estimated scale. Then, the frequency information is exchanged between the compressed target signal and the small-parameter signal in the frequency domain. Finally, the CSR is used to amplify and detect the weak target signal processed by re-scaling frequency and FIE. Performance analysis of signal detection and numerical simulation are carried out to demonstrate that F-RFSR has more efficient sampling ratio than RFSR for practical application.
      Corresponding author: Leng Yong-Gang, leng_yg@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275336), and Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC32200).
    [1]

    Beniz R, Sutera A, Vulpiani A 1981J. Phys. A:Math. Gen. 14 L453

    [2]

    McNamara B, Wiesenfeld K 1989Phys. Rev. A 39 4854

    [3]

    Gammaitoni L, Hanggi P, Jung P, Marchesoni F 1998Rev. Mod. Phys. 70 223

    [4]

    Hu G 1994Stochastic Forces and Nonlinear System (Shanghai:Shanghai Science & Technology Education Press) pp219-254(in Chinese)[胡岗1994随机力与非线性系统(上海:上海科技教育出版社)第219–254页]

    [5]

    Bates R, Blyuss O, Zaikin A 2014Phys. Rev. E 89 032716

    [6]

    Yang Y B, Jiang Z P, Xu B H 2009J. Phys. A:Math. Theor. 42 145207

    [7]

    Dylov D V, Fleischer J W 2010Nat. Photon. 4 323

    [8]

    Jha R K, Biswas P K, Chatterji B N 2012IET Image Process. 6 230

    [9]

    Duan F B, Xu B H 2003Int. J. Bifurcat. Chaos 13 411

    [10]

    Hu N Q, Chen M, Wen X S 2003Mech. Syst. Signal Pr. 17 883

    [11]

    Li J M, Chen X F, He Z J 2013Mech. Syst. Signal Pr. 36 240

    [12]

    Wang J, He Q B, Kong F R 2014J. Sound Vib. 333 7401

    [13]

    Shi P M, Ding X J, Han D Y 2014Measurement 47 540

    [14]

    Han D Y, Li P, An S J, Shi P M 2016Mech. Syst. Signal Pr. 70 995

    [15]

    Zhao W L, Wang J, Wang L Z 2013Chaos 23 033117

    [16]

    Berdichevsky V, Gitterman M 1999Phys. Rev. E 60 1494

    [17]

    Jia Y, Yu S N, Li J R 2000Phys. Rev. E 62 1869

    [18]

    Jin Y F 2012Physica A 391 1928

    [19]

    Leng Y G, Leng Y S, Wang T Y, Guo Y 2006J. Sound Vib. 292 788

    [20]

    Leng Y G, Wang T Y, Guo Y, Xu Y G 2007Mech. Syst. Signal Pr. 21 138

    [21]

    Chen M, Hu N Q, Qin G J, An M C 2009Chin. J. Mech. Eng. 45 131(in Chinese)[陈敏, 胡茑庆, 秦国军, 安茂春2009机械工程学报45 131]

    [22]

    Yang D X, Hu Z, Yang Y M 2012Acta Phys. Sin. 61 080501(in Chinese)[杨定新, 胡政, 杨拥民2012 61 080501]

    [23]

    Ye Q H, Huang H N, He X Y, Zhang C H 2003OCEANS 2003 Proceedings San Diego, CA, USA, September 22-26, 2003 p2410

    [24]

    Lin M, Huang Y M 2006Acta Phys. Sin. 55 3277(in Chinese)[林敏, 黄咏梅2006 55 3277]

    [25]

    Tan J Y, Chen X F, Wang J Y, Chen H X 2009Mech. Syst. Signal Pr. 23 811

    [26]

    Yang D X, Hu N Q 2003J. Natl. Univ. Def. Technol. 25 91(in Chinese)[杨定新, 胡茑庆2003国防科技大学学报2591]

    [27]

    Zhai R C, Xie W S 2000Numerical Analysis (Tianjin:Tianjin University Press) pp235-236(in Chinese)[翟瑞彩, 谢伟松2000数值分析(天津:天津大学出版社)第235–236页]

    [28]

    Leng Y G 2011Acta Phys. Sin. 60 020503(in Chinese)[冷永刚2011 60 020503]

  • [1]

    Beniz R, Sutera A, Vulpiani A 1981J. Phys. A:Math. Gen. 14 L453

    [2]

    McNamara B, Wiesenfeld K 1989Phys. Rev. A 39 4854

    [3]

    Gammaitoni L, Hanggi P, Jung P, Marchesoni F 1998Rev. Mod. Phys. 70 223

    [4]

    Hu G 1994Stochastic Forces and Nonlinear System (Shanghai:Shanghai Science & Technology Education Press) pp219-254(in Chinese)[胡岗1994随机力与非线性系统(上海:上海科技教育出版社)第219–254页]

    [5]

    Bates R, Blyuss O, Zaikin A 2014Phys. Rev. E 89 032716

    [6]

    Yang Y B, Jiang Z P, Xu B H 2009J. Phys. A:Math. Theor. 42 145207

    [7]

    Dylov D V, Fleischer J W 2010Nat. Photon. 4 323

    [8]

    Jha R K, Biswas P K, Chatterji B N 2012IET Image Process. 6 230

    [9]

    Duan F B, Xu B H 2003Int. J. Bifurcat. Chaos 13 411

    [10]

    Hu N Q, Chen M, Wen X S 2003Mech. Syst. Signal Pr. 17 883

    [11]

    Li J M, Chen X F, He Z J 2013Mech. Syst. Signal Pr. 36 240

    [12]

    Wang J, He Q B, Kong F R 2014J. Sound Vib. 333 7401

    [13]

    Shi P M, Ding X J, Han D Y 2014Measurement 47 540

    [14]

    Han D Y, Li P, An S J, Shi P M 2016Mech. Syst. Signal Pr. 70 995

    [15]

    Zhao W L, Wang J, Wang L Z 2013Chaos 23 033117

    [16]

    Berdichevsky V, Gitterman M 1999Phys. Rev. E 60 1494

    [17]

    Jia Y, Yu S N, Li J R 2000Phys. Rev. E 62 1869

    [18]

    Jin Y F 2012Physica A 391 1928

    [19]

    Leng Y G, Leng Y S, Wang T Y, Guo Y 2006J. Sound Vib. 292 788

    [20]

    Leng Y G, Wang T Y, Guo Y, Xu Y G 2007Mech. Syst. Signal Pr. 21 138

    [21]

    Chen M, Hu N Q, Qin G J, An M C 2009Chin. J. Mech. Eng. 45 131(in Chinese)[陈敏, 胡茑庆, 秦国军, 安茂春2009机械工程学报45 131]

    [22]

    Yang D X, Hu Z, Yang Y M 2012Acta Phys. Sin. 61 080501(in Chinese)[杨定新, 胡政, 杨拥民2012 61 080501]

    [23]

    Ye Q H, Huang H N, He X Y, Zhang C H 2003OCEANS 2003 Proceedings San Diego, CA, USA, September 22-26, 2003 p2410

    [24]

    Lin M, Huang Y M 2006Acta Phys. Sin. 55 3277(in Chinese)[林敏, 黄咏梅2006 55 3277]

    [25]

    Tan J Y, Chen X F, Wang J Y, Chen H X 2009Mech. Syst. Signal Pr. 23 811

    [26]

    Yang D X, Hu N Q 2003J. Natl. Univ. Def. Technol. 25 91(in Chinese)[杨定新, 胡茑庆2003国防科技大学学报2591]

    [27]

    Zhai R C, Xie W S 2000Numerical Analysis (Tianjin:Tianjin University Press) pp235-236(in Chinese)[翟瑞彩, 谢伟松2000数值分析(天津:天津大学出版社)第235–236页]

    [28]

    Leng Y G 2011Acta Phys. Sin. 60 020503(in Chinese)[冷永刚2011 60 020503]

  • [1] Liu Guang-Kai, Quan Hou-De, Kang Yan-Mei, Sun Hui-Xian, Cui Pei-Zhang, Han Yue-Ming. A quadratic polynomial receiving scheme for sine signals enhanced by stochastic resonance. Acta Physica Sinica, 2019, 68(21): 210501. doi: 10.7498/aps.68.20190952
    [2] Liang Guo-Long, Tao Kai, Wang Jin-Jin, Fan Zhan. Broadband target beam-space transformation in generalized likelihood ratio test using acoustic vector sensor array. Acta Physica Sinica, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [3] Fan Jian, Zhao Wen-Li, Zhang Ming-Lu, Tan Run-Hua, Wang Wan-Qiang. Nonlinear dynamics of stochastic resonance and its application in the method of weak signal detection. Acta Physica Sinica, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [4] Jiao Shang-Bin, Ren Chao, Huang Wei-Chao, Liang Yan-Ming. Parameter-induced stochastic resonance in multi-frequency weak signal detection with stable noise. Acta Physica Sinica, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [5] Zhang Xiao-Yan, Xu Wei, Zhou Bing-Chang. Stochastic resonance in a time-delayed asymmetric mono-stable system modulated by periodic rectangular signal. Acta Physica Sinica, 2012, 61(3): 030501. doi: 10.7498/aps.61.030501
    [6] Zhang Li, Yuan Xiu-Hua, Wu Li. Stochastic resonance for pulse signal modulated by noise in a single-mode laser system. Acta Physica Sinica, 2012, 61(11): 110501. doi: 10.7498/aps.61.110501
    [7] Leng Yong-Gang, Lai Zhi-Hui, Fan Sheng-Bo, Gao Yu-Ji. Large parameter stochastic resonance of two-dimensional Duffing oscillator and its application on weak signal detection. Acta Physica Sinica, 2012, 61(23): 230502. doi: 10.7498/aps.61.230502
    [8] Gao Shi-Long, Zhong Su-Chuan, Wei Kun, Ma Hong. Weak signal detection based on chaos and stochastic resonance. Acta Physica Sinica, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [9] Lu Zhi-Xin, Cao Li. Stochastic resonance of square wave signal in an overdamped harmonic oscillator. Acta Physica Sinica, 2011, 60(11): 110501. doi: 10.7498/aps.60.110501
    [10] Zhu Guang-Qi, Ding Ke, Zhang Yu, Zhao Yuan. Experimental research of weak signal detection based on the stochastic resonance of nonlinear system. Acta Physica Sinica, 2010, 59(5): 3001-3006. doi: 10.7498/aps.59.3001
    [11] Ning Li-Juan, Xu Wei. Stochastic resonance under modulated noise in linear systems driven by dichotomous noise. Acta Physica Sinica, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [12] Lin Min, Fang Li-Min. Time scales of the evolution in bistable system and the reinforcement of stochastic resonance. Acta Physica Sinica, 2009, 58(4): 2136-2140. doi: 10.7498/aps.58.2136
    [13] Zhang Liang-Ying, Jin Guo-Xiang, Cao Li. Stochastic resonance of frequency modulated signals in a linear model of single-mode laser. Acta Physica Sinica, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [14] Zhou Bing-Chang, Xu Wei. Stochastic resonance in an asymmetric bistable system driven by mixed periodic force and noises. Acta Physica Sinica, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [15] Lin Min, Huang Yong-Mei. Modulation and demodulation for detecting weak periodic signal of stochastic resonance. Acta Physica Sinica, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
    [16] Xu Wei, Jin Yan-Fei, Xu Meng, Li Wei. Stochastic resonance for bias-signal-modulated noise in a linear system. Acta Physica Sinica, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [17] Jin Yan-Fei, Xu Wei, Li Wei, Xu Meng. Stochastic resonance for periodically modulated noise in a linear system. Acta Physica Sinica, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [18] Han Li-Bo, Cao Li, Wu Da-Jin, Wang Jun. Stochastic resonance in a single-mode laser driven by the direct signal-modulated correlated colored noise. Acta Physica Sinica, 2004, 53(7): 2127-2132. doi: 10.7498/aps.53.2127
    [19] Leng Yong-Gang, Wang Tai-Yong. Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy Noise. Acta Physica Sinica, 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
    [20] Zhu Heng-Jiang, Li Rong, Wen Xiao-Dong. Extracting information signal under noise by stochastic resonance. Acta Physica Sinica, 2003, 52(10): 2404-2408. doi: 10.7498/aps.52.2404
Metrics
  • Abstract views:  6515
  • PDF Downloads:  228
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2016
  • Accepted Date:  22 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map