-
研究了在数学、力学中广泛出现的一类非线性强阻尼广义sine-Gordon扰动微分方程问题. 首先, 引入行波变换, 求出退化方程的精确解. 再构造一个泛函, 创建了一个变分迭代算法, 最后, 求出原非线性强阻尼广义sine-Gordon扰动微分方程问题的近似行波解析解. 用变分迭代法可得到的各次近似解, 具有便于求解、精度高等特点. 求得的近似解析解弥补了单纯用数值方法的模拟解的不足.
-
关键词:
- 行波 /
- 强阻尼 /
- sine-Gordon方程
A class of nonlinear strong damping sine-Gordon disturbed evolution differential equation is studied which appears widely in mathematics and mechanics. Firstly, we introduce a traveling wave transformation, and obtain the exact solution of degenerate equation. Then a functional calculating method for variational iteration is constructed, thus an iterative expansion is found. Finally, the approximate traveling wave analytic solutions for the original strong damping generalized sine-Gordon disturbed evolution equation are found. The arbitrary order approximate solutions, and the simple variational iteration method are obtained with higher accuracy. The approximate analytic solution can make up for the imperfection of the simple numerical simulation solution.-
Keywords:
- traveling wave /
- strong damping /
- sine-Gordon equation
[1] Parkes E J 2008 Chaos Solitons Fractals 38 154
[2] Sirendaoreji J S 2003 Phys. Lett. A 309 387
[3] McPhaden M J, Zhang D 2002 Nature 415 603
[4] Gu D F 1997 Science 275 805
[5] Wu J P 2011 Chin. Phys. Lett. 28 060207
[6] Zuo J M, Zhang Y M 2011 Chin. Phys. B 20 010205
[7] Pang J, Jin L H, Zhao Q 2012 Acta Phys. Sin. 61 140201 (in Chinese) [庞晶, 靳玲花, 赵强 2012 61 140201]
[8] Xin P, Liu X Q, Zhang L L 2011 Chin. Phys. Lett. 28 020201
[9] Li Ning, Liu Xi 2013 Acta Phys. Sin. 62 160203 (in Chinese) [李宁, 刘希 2013 62 160203]
[10] Xu Y H, Lin W T, Xu H, Yao J S, Mo J Q 2012 J. Lanzhou Univ. 48 100 (in Chinese) [许永红, 林万涛, 徐惠, 姚静荪, 莫嘉琪 2012 兰州大学学报 48 100]
[11] Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta. Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 62 010201]
[12] Mo Jiaqi 2009 Science in China, Ser. G 52 1007
[13] Mo J Q, Chen X F 2010 Chin. Phys. B 19 100203
[14] Mo J Q 2010 Chin. Phys. 19 010203
[15] Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. 19 030202
[16] 2011 Commun Theor. Phy. 55 387
[17] Mo J Q, Lin W T 2011 J. Sys. Sci. Complexity 24 271
[18] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
[19] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 010208
[20] He J H 2002 Approximate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese) [何吉欢 2002 工程和科学计算中的近似非线性分析方法 郑州: 河南科学技术出版社]
[21] Lebedev L P, Cloud M J 2003 The Calculus of Variations and Functional Analysis with Optimal Control and Applications in Mechanics (New York: World Scientific)
[22] de Jager E M, Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co)
[23] Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problem, (Basel: Birkhauserm Verlag AG)
[24] He J H 1999 J. Non-Linear Mech 34 699
[25] He J H 2000 Appl. Math. Comput 114 115
[26] He J H 2004 Chaos, Solitons & Fractals 19 847
[27] He J H, Wu X H 2006 Chaos, Solitons & Fractals 29 108
[28] He J H 2007 Chaos, Solitons & Fractals 34 1430
[29] He J H, Wu G C 2010 Nonlinear Sci. Lett. A 1 1
[30] He J H 2010 J. Nonlinear Scoences and Nimweical Simulation 11 555
[31] Wang Q, Fu F H 2012 Int. J. Engineering and Manufacturing 2 36
-
[1] Parkes E J 2008 Chaos Solitons Fractals 38 154
[2] Sirendaoreji J S 2003 Phys. Lett. A 309 387
[3] McPhaden M J, Zhang D 2002 Nature 415 603
[4] Gu D F 1997 Science 275 805
[5] Wu J P 2011 Chin. Phys. Lett. 28 060207
[6] Zuo J M, Zhang Y M 2011 Chin. Phys. B 20 010205
[7] Pang J, Jin L H, Zhao Q 2012 Acta Phys. Sin. 61 140201 (in Chinese) [庞晶, 靳玲花, 赵强 2012 61 140201]
[8] Xin P, Liu X Q, Zhang L L 2011 Chin. Phys. Lett. 28 020201
[9] Li Ning, Liu Xi 2013 Acta Phys. Sin. 62 160203 (in Chinese) [李宁, 刘希 2013 62 160203]
[10] Xu Y H, Lin W T, Xu H, Yao J S, Mo J Q 2012 J. Lanzhou Univ. 48 100 (in Chinese) [许永红, 林万涛, 徐惠, 姚静荪, 莫嘉琪 2012 兰州大学学报 48 100]
[11] Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta. Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 62 010201]
[12] Mo Jiaqi 2009 Science in China, Ser. G 52 1007
[13] Mo J Q, Chen X F 2010 Chin. Phys. B 19 100203
[14] Mo J Q 2010 Chin. Phys. 19 010203
[15] Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. 19 030202
[16] 2011 Commun Theor. Phy. 55 387
[17] Mo J Q, Lin W T 2011 J. Sys. Sci. Complexity 24 271
[18] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205
[19] Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 010208
[20] He J H 2002 Approximate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese) [何吉欢 2002 工程和科学计算中的近似非线性分析方法 郑州: 河南科学技术出版社]
[21] Lebedev L P, Cloud M J 2003 The Calculus of Variations and Functional Analysis with Optimal Control and Applications in Mechanics (New York: World Scientific)
[22] de Jager E M, Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co)
[23] Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problem, (Basel: Birkhauserm Verlag AG)
[24] He J H 1999 J. Non-Linear Mech 34 699
[25] He J H 2000 Appl. Math. Comput 114 115
[26] He J H 2004 Chaos, Solitons & Fractals 19 847
[27] He J H, Wu X H 2006 Chaos, Solitons & Fractals 29 108
[28] He J H 2007 Chaos, Solitons & Fractals 34 1430
[29] He J H, Wu G C 2010 Nonlinear Sci. Lett. A 1 1
[30] He J H 2010 J. Nonlinear Scoences and Nimweical Simulation 11 555
[31] Wang Q, Fu F H 2012 Int. J. Engineering and Manufacturing 2 36
计量
- 文章访问数: 6677
- PDF下载量: 666
- 被引次数: 0