-
首次提出圆顶轴棱锥这一新型光学元件. 由衍射理论分析了平面波通过圆顶轴棱锥后的光场强度分布, 用软件对光强分布进行仿真. 结果表明, 平行光通过圆顶轴棱锥后可以形成多个局域空心光束 (bottle beam), 由于球面波能量在焦点附近高度集中, 所得的 bottle beam在焦点附近强度极大. 通过仿真对比得知用圆顶轴棱锥产生的 bottle beam的暗域周围光强远大于用两束Bessel光束干涉所得, 大幅度提高了 bottle beam囚禁粒子的效率. 通过比较这两种方法产生的 bottle beam对粒子囚禁的散射力, 证实了圆顶轴棱锥产生 bottle beam在粒子囚禁方面更具优势.A novel optical element, vaulted axicon, is proposed for the first time in this paper. We analyze the distribution of light field with diffraction theory, and simulate the intensity distribution behind vaulted axicon. The result shows that multi-bottle beam can be obtained after a plane wave has passed through an vaulted axicon, moreover the intensity of the bottle beam is very high in the focal region because of the energy of spherical wave is significant concentrated in this region. The simulation and comparison show that the intensity around the bottle beam generated by vaulted axicon is far higher than that generated by superposition of two Bessel beams, therefore the particle trapping efficiency can be significantly increased. By comparing the scattering forces of bottle beam generated by the two methods, we demonstrate that the bottle beam generated by vaulted axicon is superior in particle trapping.
-
Keywords:
- vaulted axicon /
- bottle beam /
- coherent /
- spherical wave
[1] Garces-Chavez V, McGloin D, Melville H, Sibbett W, Dholakia K 2000 Nature 419 145
[2] Tatarkova S A, Sibbett W, Dholakia K 2003 Phys. Rev. Lett. 91 038101
[3] Li Q, Feng W L, Hu X M, Cao Q, Sha D G, Lin J M 2008 Chin. Phys. B 17 726
[4] Fahrbach F O, Rohrbach A 2012 Nature Commun. 3 632
[5] Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202
[6] Moffitt J R, Chemla Y R, Smith S B, Bustamante C 2008 Ann. Rev. Biochem. 77 205
[7] Xu P, He X D, Wang J, Zhan M S 2010 Opt. Lett. 35 2164
[8] Wei M D, Shiao W L, Lin Y T 2005 Opt. Commun. 248 7
[9] Ahluwalia B P S, Yuan X C, Tao S H 2004 Opt. Commun. 238 177
[10] Wu F T, Lu W H, Liu B 2010 SPIE 7721 7721
[11] Tai P T, Hsieh W F, Chen C H 2004 Opt. Express 12 5827
[12] Zhang Q A, Wu F T, Zheng W T, Ma L 2011 Acta Phys. Sin. 60 094201 (in Chinese) [张前安, 吴逢铁, 郑维涛, 马亮 2011 60 094201]
[13] Wu F T, Jiang X G, Liu B, Qiu Z X 2009 Acta Phys. Sin. 58 2410 (in Chinese) [吴逢铁, 江新光, 刘彬, 邱振兴 2009 58 2410]
[14] Cheng Z M, Wu F T, Zhang Q A, Zheng W T 2012 Acta Phys. Sin. 61 094201 (in Chinese) [程治明, 吴逢铁, 张前安, 郑维涛 2012 61 094201]
[15] Ahluwalia B P S, Cheong W C, Yuan X C, Zhang L S, Tao S H, Bu J, Wang H 2006 Opt. Lett. 31 987
[16] Friberg A T 1996 J. Opt. Soc. Am. A 13 743
[17] Harada Y, Asakura T 1996 Opt. Commun. 124 529
-
[1] Garces-Chavez V, McGloin D, Melville H, Sibbett W, Dholakia K 2000 Nature 419 145
[2] Tatarkova S A, Sibbett W, Dholakia K 2003 Phys. Rev. Lett. 91 038101
[3] Li Q, Feng W L, Hu X M, Cao Q, Sha D G, Lin J M 2008 Chin. Phys. B 17 726
[4] Fahrbach F O, Rohrbach A 2012 Nature Commun. 3 632
[5] Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202
[6] Moffitt J R, Chemla Y R, Smith S B, Bustamante C 2008 Ann. Rev. Biochem. 77 205
[7] Xu P, He X D, Wang J, Zhan M S 2010 Opt. Lett. 35 2164
[8] Wei M D, Shiao W L, Lin Y T 2005 Opt. Commun. 248 7
[9] Ahluwalia B P S, Yuan X C, Tao S H 2004 Opt. Commun. 238 177
[10] Wu F T, Lu W H, Liu B 2010 SPIE 7721 7721
[11] Tai P T, Hsieh W F, Chen C H 2004 Opt. Express 12 5827
[12] Zhang Q A, Wu F T, Zheng W T, Ma L 2011 Acta Phys. Sin. 60 094201 (in Chinese) [张前安, 吴逢铁, 郑维涛, 马亮 2011 60 094201]
[13] Wu F T, Jiang X G, Liu B, Qiu Z X 2009 Acta Phys. Sin. 58 2410 (in Chinese) [吴逢铁, 江新光, 刘彬, 邱振兴 2009 58 2410]
[14] Cheng Z M, Wu F T, Zhang Q A, Zheng W T 2012 Acta Phys. Sin. 61 094201 (in Chinese) [程治明, 吴逢铁, 张前安, 郑维涛 2012 61 094201]
[15] Ahluwalia B P S, Cheong W C, Yuan X C, Zhang L S, Tao S H, Bu J, Wang H 2006 Opt. Lett. 31 987
[16] Friberg A T 1996 J. Opt. Soc. Am. A 13 743
[17] Harada Y, Asakura T 1996 Opt. Commun. 124 529
计量
- 文章访问数: 7689
- PDF下载量: 1223
- 被引次数: 0