搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有三角自旋环的伊辛-海森伯链的热纠缠

郑一丹 毛竹 周斌

引用本文:
Citation:

具有三角自旋环的伊辛-海森伯链的热纠缠

郑一丹, 毛竹, 周斌

Thermal entanglement of Ising-Heisenberg chain with triangular plaquettes

Zheng Yi-Dan, Mao Zhu, Zhou Bin
PDF
导出引用
  • 研究了具有三角自旋环的伊辛-海森伯链在磁场作用下的热纠缠性质.分别讨论了三角自旋环中自旋1/2粒子间相互作用的三种情形,即XXX,XXZ和XYZ海森伯模型.利用转移矩阵方法,数值计算了具有三角自旋环的伊辛-海森伯链的配对纠缠度.计算结果表明,外加磁场强度和温度对系统处于上述三种海森伯模型的热纠缠性质均有重要影响.给出了系统在不同的海森伯模型下,纠缠消失对应的临界温度随磁场强度的变化图,由此可以得到系统存在配对纠缠的参数区域,同时发现在特定的参数区域存在纠缠恢复现象.因此适当调节温度和磁场强度,可以有效调控具有三角自旋环的伊辛-海森伯链热纠缠性质.
    Quantum entanglement as an important resource in quantum computation and quantum information has attracted much attention in recent decades. The effect of temperature should be viewed as an external control in the preparation of entangled state, and the thermal entanglement of the Heisenberg spin model has been discussed intensively. Due to the quantum fluctuation and thermal effect, there have been found some interesting physical phenomena in the geometrically frustrated spin system at zero or a certain temperature. Meanwhile, the lattice spin system with triangular plaquettes is regarded as a general structure of magnetic material. In this paper, we theoretically analyze the thermal entanglement of Ising-Heisenberg chain with triangular plaquettes. The transfer matrix method is used to calculate numerically the thermal entanglement in the infinite Ising-Heisenberg chain. We consider three kinds of Heisenberg spin interaction models (i.e., XXX-Heisenberg model, XXZ-Heisenberg model and XYZ-Heisenberg model), and discuss the effects of magnetic field and temperature on the three models, respectively. The results show that temperature and magnetic field have important effects on the three models. Meanwhile, it is found that the XXX-Heisenberg model is more sensitive than the anisotropy model (i.e., XXZ-Heisenberg model or XYZ-Heisenberg model) when temperature rises. A certain magnetic field would promote the generation of the quantum entangled states in all the three cases when the thermal fluctuation suppresses the quantum effects of the systems. In addition, it is found that the entanglement of XYZ-Heisenberg model is more robust than the others at a higher temperature, especially when the anisotropy along the z axis is greater than that along the y axis. We also plot the variations of the critical temperature with magnetic field in the three models. From the critical temperature-magnetic field phase diagrams, we can obtain the range of parameters in which the pairwise entanglement of the system exists. We also find that the entanglement revival behaviors may occur in a specific range of the parameters. Therefore, the properties of the thermal entanglement of Ising-Heisenberg chain with triangular plaquettes can be controlled and enhanced by choosing and using suitable parameters of magnetic field and temperature.
      通信作者: 毛竹, maozhu@hubu.edu.cn;binzhou@hubu.edu.cn ; 周斌, maozhu@hubu.edu.cn;binzhou@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274102)、教育部新世纪优秀人才支持计划(批准号:NCET-11-0960)和高等学校博士学科点专项科研基金(批准号:20134208110001)资助的课题.
      Corresponding author: Mao Zhu, maozhu@hubu.edu.cn;binzhou@hubu.edu.cn ; Zhou Bin, maozhu@hubu.edu.cn;binzhou@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).
    [1]

    Misguich G, Lhuillier C 2004 Frustrated Spin Systems (Singapore:World Scientific) p229

    [2]

    Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K, Kiefer K 2007 Nature Mater. 6 853

    [3]

    Moessner R, Sondhi S L 2001 Phys. Rev. B 63 224401

    [4]

    Schmidt B, Shannon N, Thalmeier P 2006 J. Phys.:Conf. Ser. 51 207

    [5]

    Zhitomirsky M E, Honecker A, Petrenko O A 2000 Phys. Rev. Lett. 85 3269

    [6]

    Lee S, Lee K C 1998 Phys. Rev. B 57 8472

    [7]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [8]

    Trif M, Troiani F, Stepanenko D, Loss D 2008 Phys. Rev. Lett. 101 217201

    [9]

    Kubo K 1993 Phys. Rev. B 48 10552

    [10]

    Nakamura T, Saika Y 1995 J. Phys. Soc. Jpn. 64 695

    [11]

    Nakamura T, Kubo K 1996 Phys. Rev. B 53 6393

    [12]

    Chen S, Bttner H, Voit J 2003 Phys. Rev. B 67 054412

    [13]

    Guo Y P, Liu Z Q, Xu Y L, Kong X M 2016 Phys. Rev. E 93 052151

    [14]

    Collins M F, Petrenko O A 1997 Can. J. Phys. 75 605

    [15]

    Lecheminant P, Bernu B, Lhuillier C, Pierre L, Sindzingre P 1997 Phys. Rev. B 56 2521

    [16]

    Waldtmann C, Everts H U, Bernu B, Lhuillier C, Sindzingre P, Lecheminant P, Pierre L 1998 Eur. Phys. J. B 2 501

    [17]

    Mila F 1998 Phys. Rev. Lett. 81 2356

    [18]

    Mambrini M, Trébosc J, Mila F 1999 Phys. Rev. B 59 13806

    [19]

    Totsuka K, Mikeska H J 2002 Phys. Rev. B 66 054435

    [20]

    Rojas O, Alcaraz F C 2003 Phys. Rev. B 67 174401

    [21]

    Rojas O, Rojas M, Ananikian N S, de Souza S M 2012 Phys. Rev. A 86 042330

    [22]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V V 2015 Solid State Commun. 224 15

    [23]

    Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York:Academic Press) p89

    [24]

    Hida K 1994 J. Phys. Soc. Jpn. 63 2359

    [25]

    Ohanyan V, Ananikian N S 2003 Phys. Lett. A 307 76

    [26]

    Strečka J, Hagiwara M, Jaščur M, Minami K 2004 Czech. J. Phys. 54 583

    [27]

    Strečka J, Jaščur M, Hagiwara M, Minami K, Narumi Y, Kindo K 2005 Phys. Rev. B 72 024459

    [28]

    Antonosyan D, Bellucci S, Ohanyan V 2009 Phys. Rev. B 79 014432

    [29]

    Ohanyan V 2010 Phys. Atom. Nucl. 73 494

    [30]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [31]

    Wang X 2001 Phys. Rev. A 64 012313

    [32]

    Wang X 2001 Phys. Lett. A 281 101

    [33]

    Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901

    [34]

    Zhou L, Song H S, Guo Y Q, Li C 2003 Phys. Rev. A 68 024301

    [35]

    Gunlycke D, Kendon V M, Vedral V, Bose S 2001 Phys. Rev. A 64 042302

    [36]

    Terzis A F, Paspalakis E 2004 Phys. Lett. A 333 438

    [37]

    Canosa N, Rossignoli R 2004 Phys. Rev. A 69 052306

    [38]

    Xi X Q, Chen W X, Hao S R, Yue R H 2002 Phys. Lett. A 300 567

    [39]

    Sun Y, Chen Y, Chen H 2003 Phys. Rev. A 68 044301

    [40]

    Asoudeh M, Karimipour V 2005 Phys. Rev. A 71 022308

    [41]

    Cao M, Zhu S 2005 Phys. Rev. A 71 034311

    [42]

    Zhang G F, Li S S 2005 Phys. Rev. A 72 034302

    [43]

    Wu K D, Zhou B, Cao W Q 2007 Phys. Lett. A 362 381

    [44]

    Zhou B 2011 Int. J. Mod. Phys. B 25 2135

    [45]

    Chen S R, Xia Y J, Man Z X 2010 Chin. Phys. B 19 050304

    [46]

    Ren J Z, Shao X Q, Zhang S, Yeon K H 2010 Chin. Phys. B 19 100307

    [47]

    Lu P, Wang J S 2009 Acta Phys. Sin. 58 5955 (in Chinese)[卢鹏, 王顺金 2009 58 5955]

    [48]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)[张英丽, 周斌 2011 60 120301]

    [49]

    Ananikian N S, Ananikyan L N, Chakhmakhchyan L A, Rojas O 2012 J. Phys.:Condens. Matter 24 256001

    [50]

    Torrico J, Rojas M, de Souza S M, Rojas O, Ananikian N S 2014 Europhys. Lett. 108 50007

    [51]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V 2015 Solid State Commun. 203 5

    [52]

    Qiao J, Zhou B 2015 Chin. Phys. B 24 110306

    [53]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [54]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [55]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

  • [1]

    Misguich G, Lhuillier C 2004 Frustrated Spin Systems (Singapore:World Scientific) p229

    [2]

    Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K, Kiefer K 2007 Nature Mater. 6 853

    [3]

    Moessner R, Sondhi S L 2001 Phys. Rev. B 63 224401

    [4]

    Schmidt B, Shannon N, Thalmeier P 2006 J. Phys.:Conf. Ser. 51 207

    [5]

    Zhitomirsky M E, Honecker A, Petrenko O A 2000 Phys. Rev. Lett. 85 3269

    [6]

    Lee S, Lee K C 1998 Phys. Rev. B 57 8472

    [7]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [8]

    Trif M, Troiani F, Stepanenko D, Loss D 2008 Phys. Rev. Lett. 101 217201

    [9]

    Kubo K 1993 Phys. Rev. B 48 10552

    [10]

    Nakamura T, Saika Y 1995 J. Phys. Soc. Jpn. 64 695

    [11]

    Nakamura T, Kubo K 1996 Phys. Rev. B 53 6393

    [12]

    Chen S, Bttner H, Voit J 2003 Phys. Rev. B 67 054412

    [13]

    Guo Y P, Liu Z Q, Xu Y L, Kong X M 2016 Phys. Rev. E 93 052151

    [14]

    Collins M F, Petrenko O A 1997 Can. J. Phys. 75 605

    [15]

    Lecheminant P, Bernu B, Lhuillier C, Pierre L, Sindzingre P 1997 Phys. Rev. B 56 2521

    [16]

    Waldtmann C, Everts H U, Bernu B, Lhuillier C, Sindzingre P, Lecheminant P, Pierre L 1998 Eur. Phys. J. B 2 501

    [17]

    Mila F 1998 Phys. Rev. Lett. 81 2356

    [18]

    Mambrini M, Trébosc J, Mila F 1999 Phys. Rev. B 59 13806

    [19]

    Totsuka K, Mikeska H J 2002 Phys. Rev. B 66 054435

    [20]

    Rojas O, Alcaraz F C 2003 Phys. Rev. B 67 174401

    [21]

    Rojas O, Rojas M, Ananikian N S, de Souza S M 2012 Phys. Rev. A 86 042330

    [22]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V V 2015 Solid State Commun. 224 15

    [23]

    Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York:Academic Press) p89

    [24]

    Hida K 1994 J. Phys. Soc. Jpn. 63 2359

    [25]

    Ohanyan V, Ananikian N S 2003 Phys. Lett. A 307 76

    [26]

    Strečka J, Hagiwara M, Jaščur M, Minami K 2004 Czech. J. Phys. 54 583

    [27]

    Strečka J, Jaščur M, Hagiwara M, Minami K, Narumi Y, Kindo K 2005 Phys. Rev. B 72 024459

    [28]

    Antonosyan D, Bellucci S, Ohanyan V 2009 Phys. Rev. B 79 014432

    [29]

    Ohanyan V 2010 Phys. Atom. Nucl. 73 494

    [30]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [31]

    Wang X 2001 Phys. Rev. A 64 012313

    [32]

    Wang X 2001 Phys. Lett. A 281 101

    [33]

    Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901

    [34]

    Zhou L, Song H S, Guo Y Q, Li C 2003 Phys. Rev. A 68 024301

    [35]

    Gunlycke D, Kendon V M, Vedral V, Bose S 2001 Phys. Rev. A 64 042302

    [36]

    Terzis A F, Paspalakis E 2004 Phys. Lett. A 333 438

    [37]

    Canosa N, Rossignoli R 2004 Phys. Rev. A 69 052306

    [38]

    Xi X Q, Chen W X, Hao S R, Yue R H 2002 Phys. Lett. A 300 567

    [39]

    Sun Y, Chen Y, Chen H 2003 Phys. Rev. A 68 044301

    [40]

    Asoudeh M, Karimipour V 2005 Phys. Rev. A 71 022308

    [41]

    Cao M, Zhu S 2005 Phys. Rev. A 71 034311

    [42]

    Zhang G F, Li S S 2005 Phys. Rev. A 72 034302

    [43]

    Wu K D, Zhou B, Cao W Q 2007 Phys. Lett. A 362 381

    [44]

    Zhou B 2011 Int. J. Mod. Phys. B 25 2135

    [45]

    Chen S R, Xia Y J, Man Z X 2010 Chin. Phys. B 19 050304

    [46]

    Ren J Z, Shao X Q, Zhang S, Yeon K H 2010 Chin. Phys. B 19 100307

    [47]

    Lu P, Wang J S 2009 Acta Phys. Sin. 58 5955 (in Chinese)[卢鹏, 王顺金 2009 58 5955]

    [48]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)[张英丽, 周斌 2011 60 120301]

    [49]

    Ananikian N S, Ananikyan L N, Chakhmakhchyan L A, Rojas O 2012 J. Phys.:Condens. Matter 24 256001

    [50]

    Torrico J, Rojas M, de Souza S M, Rojas O, Ananikian N S 2014 Europhys. Lett. 108 50007

    [51]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V 2015 Solid State Commun. 203 5

    [52]

    Qiao J, Zhou B 2015 Chin. Phys. B 24 110306

    [53]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [54]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [55]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

  • [1] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法.  , 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [2] 李响, 吴德伟, 苗强, 朱浩男, 魏天丽. 纠缠微波信号的特性及表示方法.  , 2018, 67(24): 240301. doi: 10.7498/aps.67.20181595
    [3] 杨莹, 曹怀信. 构造纠缠目击的一般方法.  , 2018, 67(7): 070303. doi: 10.7498/aps.67.20172697
    [4] 朱浩男, 吴德伟, 李响, 王湘林, 苗强, 方冠. 基于纠缠见证的路径纠缠微波检测方法.  , 2018, 67(4): 040301. doi: 10.7498/aps.67.20172164
    [5] 刘贵艳, 毛竹, 周斌. 具有次近邻相互作用的五量子比特XXZ海森伯自旋链的热纠缠.  , 2018, 67(2): 020301. doi: 10.7498/aps.67.20171641
    [6] 范竑锐, 袁亚丽, 侯喜文. 用两比特海森伯XY模型研究热几何失协.  , 2016, 65(22): 220301. doi: 10.7498/aps.65.220301
    [7] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响.  , 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [8] 郑一丹, 周斌. {Cu3}单分子磁体在热平衡和磁场作用下的三体纠缠.  , 2016, 65(12): 120301. doi: 10.7498/aps.65.120301
    [9] 王琪, 王晓茜. 一维倾斜场伊辛模型中的纠缠特性.  , 2013, 62(22): 220301. doi: 10.7498/aps.62.220301
    [10] 王鲁顺, 江慧, 孔祥木. 混合自旋XY系统热纠缠的研究.  , 2012, 61(24): 240304. doi: 10.7498/aps.61.240304
    [11] 姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖. 内禀退相干下海森伯XY模型中的热纠缠性质及其相干调控.  , 2012, 61(17): 170302. doi: 10.7498/aps.61.170302
    [12] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响.  , 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [13] 张英丽, 周斌. 具有Dzyaloshinskii-Moriya相互作用的四量子比特海森堡XXZ模型中的热纠缠.  , 2011, 60(12): 120301. doi: 10.7498/aps.60.120301
    [14] 王彦辉, 夏云杰. 具有Dzyaloshinskii-Moriya相互作用的三量子比特海森伯模型中的对纠缠.  , 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [15] 李龙龙, 徐文, 曾雉. 转移矩阵理论及其在Ⅲ/Ⅴ族半导体量子阱体系中的应用.  , 2009, 58(13): 266-S271. doi: 10.7498/aps.58.266
    [16] 杨 健, 任 珉, 於亚飞, 张智明, 刘颂豪. 利用交叉克尔非线性效应实现纠缠转移.  , 2008, 57(2): 887-891. doi: 10.7498/aps.57.887
    [17] 秦 猛, 田东平, 陶应娟. 自旋为1的三粒子Heisenberg XXX链中杂质对热纠缠的影响.  , 2008, 57(9): 5395-5399. doi: 10.7498/aps.57.5395
    [18] 向少华, 杨 雄, 宋克慧. 推广的Jaynes-Cummings模型中原子纠缠的时间演化和热纠缠态.  , 2004, 53(5): 1289-1292. doi: 10.7498/aps.53.1289
    [19] 张 涛, 惠小强, 岳瑞宏. 三量子位Heisenberg XX 链中杂质对纠缠的影响.  , 2004, 53(8): 2755-2760. doi: 10.7498/aps.53.2755
    [20] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
计量
  • 文章访问数:  6562
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-17
  • 修回日期:  2017-09-22
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map