Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Field evaporation behaviour for carbon nanotube thin-film

Ma Yu-Long Xiang Wei Jin Da-Zhi Chen Lei Yao Ze-En Wang Qi-Long

Citation:

Field evaporation behaviour for carbon nanotube thin-film

Ma Yu-Long, Xiang Wei, Jin Da-Zhi, Chen Lei, Yao Ze-En, Wang Qi-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, the carbon nanotube (CNT) emitters used for ion sources or gas sensors have been investigated, and the progress of several approaches such as field ionization and field desorption sources has been reported. However, a major concern for these applications is possible loss of CNTs caused by field evaporation, which can shorten the lifetimes of CNT-based emitters used for high electric field ion sources. So in CNT-based field emitter technology, emitter lifetime and degradation will be key parameters to be controlled. However, up to now only very few investigations in this direction have been conducted. The reason for this might lie in the fact that one often considers that the threshold value of field evaporation for a kind of material ( 40 V/nm) is much higher than the field of ionization or desorption ( 10 V/nm) according to the metal material characteristics (such as the threshold values of field evaporation for tungsten and molybdenum are 54 V/nm and 45 V/nm, respectively). In this work, the carbon nanotube thin-film (the density of CNTs is about 2.5108/cm2) is fabricated by screen-printing method, and the field evaporation behavior of CNT thin-film is studied experimentally in an ultrahigh vacuum system typically operating at a pressure of lower than 10-9 Torr after a 4-hour bake-out at ~200℃. Unlike the vertically aligned CNT array having higher electric field around the edge of the array because of the shielding effect, the printed CNT thin-film has more uniform distribution of electric field and is very easy to relize the mass production. The results show that the prepared CNT thin-film has quite obvious field evaporation behavior (some contaminants have deposited on the surface of grid after field evaporation, and energy-dispersive X-ray spectroscopy elemental mapping result of the grid indicates that the contaminants consist mainly of carbon elements), with turn-on field in a range of 10.0-12.6 V/nm, ion current could reach up to hundreds of pA. Meanwhile, the results with scanning electron microscope analysis and field electron emission measurement indicate that the CNT distribution turns into more non-uniform distribution after field evaporation; even some CNTs are directly dragged away from the substrate by the strong field. The field evaporation of CNT thin-film also leads to field electron emission onset voltage increasing from 240 V to 300 V, field enhancement factor decreasing from 8300 to 4200, and threshold field of field evaporation rising from 10.0 V/nm to 12.6 V/nm. However, the repeatability of sample treated by the field evaporation brings about an improvement to a certain extent. It could be understood in this way: upon applying a positive voltage, the most protruding parts, which have the strongest emissive capability, are evaporated first, which leads to the declined field enhancement factor; the parts of CNTs which have relatively weak emissive capability are not evaporated. So the uniformity of electric field is improved through reducing the difference in field enhancement factor rather than surface morphology between carbon nanotubes. The field evaporation of CNT thin-film is also a process which improves the uniformity of electric field. Therefore, the stability and repeatability of the field electron emission for carbon nanotube thin-film are improved naturally.
      Corresponding author: Yao Ze-En, zeyao@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375155, 11375077).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Henning T, Salama F 1998 Science 282 2204

    [3]

    Hiura H, Ebbesen T W, Fujita J, Tanigaki K, Takada T 1994 Nature 367 148

    [4]

    Treacy M M J, Ebbesen T W, Gibson J M 1996 Nature 381 678

    [5]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature 382 54

    [6]

    Misewich J A, Martel R, Avouris Ph, Tsang J C, Heinze S, Tersoff J 2003 Science 300 783

    [7]

    Li P, Jiang K L, Liu M, Li Q Q, Fan S S, Sun J L 2003 Appl. Phys. Lett. 82 1763

    [8]

    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 065502

    [9]

    Xin F 2012 Modification and Composite Material of Carbon Nanotubes (Beijing: Chemical Industry Press) pp26-54 (in Chinese) [辛菲 2012 碳纳米管改性及其复合材料 (北京:化学工业出版社) 第26-54页]

    [10]

    Dragoman M, Grenier K, Dubuc D, Bary L, Plana R, Fourn E, Flahaut E 2007 J. Appl. Phys. 101 106103

    [11]

    Ding D, Chen Z, Rajaputra S, Singh V 2007 Sensor. Actuat. B: Chem. 124 12

    [12]

    Li Y, Wang H C, Cao X H, Yuan M Y, Yang M J 2008 Nanotechnology 19 015503

    [13]

    Fink R L, Jiang N, Thuesen L, Leung K N, Antolak A J 2009 AIP Conf. Proc. 1099 610

    [14]

    Persaud A, Allen I, Dickinson M R, Schenkel T, Kapadia R, Takei K, Javey A 2011 J. Vac. Sci. Technol. B 29 02B107

    [15]

    Persaud A, Waldmann O, Kapadia R, Takei K, Javey A, Schenkel T 2012 Rev. Sci. Instrum. 83 02B312

    [16]

    O'Donnell K M, Fahy A, Barr M, Allison W, Dastoor P C 2012 Phys. Rev. B 85 113404

    [17]

    Colbert D T, Zhang J, McClure S M, Nikolaev P, Chen Z, Hafner J H, Owens D W, Kotula P G, Carter C B, Weaver J H, Rinzler A G, Smalley R E 1994 Science 266 1218

    [18]

    de Heer W A, Poncharal P, Berger C, Gezo J, Song Z, Bettini J, Ugarte D 2005 Science 307 907

    [19]

    Chen J, Wu F 2004 Appl. Phys. A 78 989

    [20]

    Yao X, Wu C Z, Wang H, Cheng H M, Lu G Q 2005 J. Mater. Sci. Technol. 21 57

    [21]

    Guo Z P, Ng S H, Wang J Z, Huang Z G, Liu H K, Too C O, Wallace G G 2006 J. Nanosci. Nanotechnol. 6 713

    [22]

    Kurachi H, Uemura S, Yotani J, Nagasako T, Yamada H, Ezaki T, Maesoba T, Nakao T, Ito M, Sakurai A, Saito Y, Shinohara H 2005 J. Soc. Inf. Display 13 727

    [23]

    Wang Q H, Setlur A A, Lauerhaas J M, Dai J Y, Seelig E W, Chang R P H 1998 Appl. Phys. Lett. 72 2912

    [24]

    Kwo J L, Yokoyama M, Wang W C, Chuang F Y, Lin I N 2000 Diam. Relat. Mater. 9 1270

    [25]

    Milne W I, Teo K B K, Minoux E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G, Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345

    [26]

    Nygard J, Cobden D H, Lindelof P E 2000 Nature 408 342

    [27]

    Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654

    [28]

    Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C 1997 Nature 386 474

    [29]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [30]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [31]

    Reichenbach B 2009Ph. D. Dissertation (Albuquerque: University of New Mexico)

    [32]

    Jiang J P, Weng J H, Yang P T 1980 Cathode Electronics and Principle of Gas Discharge (Beijing: National Defend Industry Press) pp163-166 (in Chinese) [江剑平, 翁甲辉, 杨泮棠 1980 阴极电子学与气体放电原理(北京:国防工业出版社)第163-166页]

    [33]

    Wu Y, Ji Q, Kwan J, Leung K N 2008 Joint International Workshop: Nuclear Technology and Society-Needs for Next Generation Berkeley, California, January 6-8, pp1-6

    [34]

    Johnson B B, Schwoebel P R, Holland C E, Resnick P J, Hertz K L, Chichester D L 2012 Nucl. Instrum. Meth. A 663 64

    [35]

    Johnson B B, Schwoebel P R, Resnick P J, Holland C E, Hertz K L, Chichester D L 2013 J. Appl. Phys. 114 174906

    [36]

    Waldmann O, Persaud A, Kapadia R, Takei T, Allen F I, Javey A, Schenkel T 2013 Thin Solid Films 534 488

    [37]

    Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550

    [38]

    Hata K, Ariff M, Tohji K, Saito Y 1999 Chem. Phys. Lett. 308 343

    [39]

    Hata K, Kiya Y, Ohata M, Saito Y 2001 Scripta Mater. 44 1571

    [40]

    Ohmae N, Matsumoto N, Ohata T, Kinoshita H 2007 Diam. Relat. Mater. 16 1179

    [41]

    Wang M S, Chen Q, Peng L M 2008 Adv. Mater. 20 724

    [42]

    Kellogg G L 1983 Phys. Rev. B 28 1957

    [43]

    Hertz K L, Johnson B B, Holland C E, Resnick P J, Schwoebel P R, Chichester D L 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Anaheim, CA, October 27-November 3, pp1434-1439

    [44]

    Li X H, Yang Z H, Chen Z G, Wang H Q, Li T B, Shen N Y, Li J 1999 New Carbon Materials 14 32 (in Chinese) [李新海, 杨占红, 陈志国, 王红强, 李添宝, 沈宁一, 李晶 1999 新型炭材料 14 32]

    [45]

    Resnick P J, Holland C E, Schwoebel P R, Hertz K L, Chichester D L 2010 Microelectron. Eng. 87 1263

    [46]

    Dean K A, Burgin T P, Chalamala B R 2001 Appl. Phys. Lett. 79 1873

    [47]

    Bonard J M, Klinke C, Dean K A, Coll B F 2003 Phys. Rev. B 67 115406

    [48]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173

    [49]

    Spindt C A, Brodie I, Humphrey L, Westerberg E R 1976 J. Appl. Phys. 47 5248

    [50]

    Forbes R G 1999 J. Vac. Sci. Technol. B 17 526

    [51]

    Liu P, Sun Q, Zhu F, Liu K, Jiang K, Liu L, Li Q, Fan S 2008 Nano Lett. 8 647

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Henning T, Salama F 1998 Science 282 2204

    [3]

    Hiura H, Ebbesen T W, Fujita J, Tanigaki K, Takada T 1994 Nature 367 148

    [4]

    Treacy M M J, Ebbesen T W, Gibson J M 1996 Nature 381 678

    [5]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature 382 54

    [6]

    Misewich J A, Martel R, Avouris Ph, Tsang J C, Heinze S, Tersoff J 2003 Science 300 783

    [7]

    Li P, Jiang K L, Liu M, Li Q Q, Fan S S, Sun J L 2003 Appl. Phys. Lett. 82 1763

    [8]

    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 065502

    [9]

    Xin F 2012 Modification and Composite Material of Carbon Nanotubes (Beijing: Chemical Industry Press) pp26-54 (in Chinese) [辛菲 2012 碳纳米管改性及其复合材料 (北京:化学工业出版社) 第26-54页]

    [10]

    Dragoman M, Grenier K, Dubuc D, Bary L, Plana R, Fourn E, Flahaut E 2007 J. Appl. Phys. 101 106103

    [11]

    Ding D, Chen Z, Rajaputra S, Singh V 2007 Sensor. Actuat. B: Chem. 124 12

    [12]

    Li Y, Wang H C, Cao X H, Yuan M Y, Yang M J 2008 Nanotechnology 19 015503

    [13]

    Fink R L, Jiang N, Thuesen L, Leung K N, Antolak A J 2009 AIP Conf. Proc. 1099 610

    [14]

    Persaud A, Allen I, Dickinson M R, Schenkel T, Kapadia R, Takei K, Javey A 2011 J. Vac. Sci. Technol. B 29 02B107

    [15]

    Persaud A, Waldmann O, Kapadia R, Takei K, Javey A, Schenkel T 2012 Rev. Sci. Instrum. 83 02B312

    [16]

    O'Donnell K M, Fahy A, Barr M, Allison W, Dastoor P C 2012 Phys. Rev. B 85 113404

    [17]

    Colbert D T, Zhang J, McClure S M, Nikolaev P, Chen Z, Hafner J H, Owens D W, Kotula P G, Carter C B, Weaver J H, Rinzler A G, Smalley R E 1994 Science 266 1218

    [18]

    de Heer W A, Poncharal P, Berger C, Gezo J, Song Z, Bettini J, Ugarte D 2005 Science 307 907

    [19]

    Chen J, Wu F 2004 Appl. Phys. A 78 989

    [20]

    Yao X, Wu C Z, Wang H, Cheng H M, Lu G Q 2005 J. Mater. Sci. Technol. 21 57

    [21]

    Guo Z P, Ng S H, Wang J Z, Huang Z G, Liu H K, Too C O, Wallace G G 2006 J. Nanosci. Nanotechnol. 6 713

    [22]

    Kurachi H, Uemura S, Yotani J, Nagasako T, Yamada H, Ezaki T, Maesoba T, Nakao T, Ito M, Sakurai A, Saito Y, Shinohara H 2005 J. Soc. Inf. Display 13 727

    [23]

    Wang Q H, Setlur A A, Lauerhaas J M, Dai J Y, Seelig E W, Chang R P H 1998 Appl. Phys. Lett. 72 2912

    [24]

    Kwo J L, Yokoyama M, Wang W C, Chuang F Y, Lin I N 2000 Diam. Relat. Mater. 9 1270

    [25]

    Milne W I, Teo K B K, Minoux E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G, Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345

    [26]

    Nygard J, Cobden D H, Lindelof P E 2000 Nature 408 342

    [27]

    Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654

    [28]

    Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C 1997 Nature 386 474

    [29]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [30]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [31]

    Reichenbach B 2009Ph. D. Dissertation (Albuquerque: University of New Mexico)

    [32]

    Jiang J P, Weng J H, Yang P T 1980 Cathode Electronics and Principle of Gas Discharge (Beijing: National Defend Industry Press) pp163-166 (in Chinese) [江剑平, 翁甲辉, 杨泮棠 1980 阴极电子学与气体放电原理(北京:国防工业出版社)第163-166页]

    [33]

    Wu Y, Ji Q, Kwan J, Leung K N 2008 Joint International Workshop: Nuclear Technology and Society-Needs for Next Generation Berkeley, California, January 6-8, pp1-6

    [34]

    Johnson B B, Schwoebel P R, Holland C E, Resnick P J, Hertz K L, Chichester D L 2012 Nucl. Instrum. Meth. A 663 64

    [35]

    Johnson B B, Schwoebel P R, Resnick P J, Holland C E, Hertz K L, Chichester D L 2013 J. Appl. Phys. 114 174906

    [36]

    Waldmann O, Persaud A, Kapadia R, Takei T, Allen F I, Javey A, Schenkel T 2013 Thin Solid Films 534 488

    [37]

    Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550

    [38]

    Hata K, Ariff M, Tohji K, Saito Y 1999 Chem. Phys. Lett. 308 343

    [39]

    Hata K, Kiya Y, Ohata M, Saito Y 2001 Scripta Mater. 44 1571

    [40]

    Ohmae N, Matsumoto N, Ohata T, Kinoshita H 2007 Diam. Relat. Mater. 16 1179

    [41]

    Wang M S, Chen Q, Peng L M 2008 Adv. Mater. 20 724

    [42]

    Kellogg G L 1983 Phys. Rev. B 28 1957

    [43]

    Hertz K L, Johnson B B, Holland C E, Resnick P J, Schwoebel P R, Chichester D L 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Anaheim, CA, October 27-November 3, pp1434-1439

    [44]

    Li X H, Yang Z H, Chen Z G, Wang H Q, Li T B, Shen N Y, Li J 1999 New Carbon Materials 14 32 (in Chinese) [李新海, 杨占红, 陈志国, 王红强, 李添宝, 沈宁一, 李晶 1999 新型炭材料 14 32]

    [45]

    Resnick P J, Holland C E, Schwoebel P R, Hertz K L, Chichester D L 2010 Microelectron. Eng. 87 1263

    [46]

    Dean K A, Burgin T P, Chalamala B R 2001 Appl. Phys. Lett. 79 1873

    [47]

    Bonard J M, Klinke C, Dean K A, Coll B F 2003 Phys. Rev. B 67 115406

    [48]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173

    [49]

    Spindt C A, Brodie I, Humphrey L, Westerberg E R 1976 J. Appl. Phys. 47 5248

    [50]

    Forbes R G 1999 J. Vac. Sci. Technol. B 17 526

    [51]

    Liu P, Sun Q, Zhu F, Liu K, Jiang K, Liu L, Li Q, Fan S 2008 Nano Lett. 8 647

  • [1] Wang Yi-Jun, Cheng Yan. Field-emission current densities of carbon nanotube under the different electric fields. Acta Physica Sinica, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [2] Hu Xiao-Ying, Wang Shu-Min, Pei Yan-Hui, Tian Hong-Wei, Zhu Pin-Wen. One-step synthesis of a carbon nano sheet-scarbon nanotubes composite and its field emission properties. Acta Physica Sinica, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [3] Lei Da, Menggen Qi-Qi-Ge, Zhang He-Liang, Zhi Ying-Biao. Field emission properties from a carbon nanotube array with parallel grid. Acta Physica Sinica, 2013, 62(24): 248502. doi: 10.7498/aps.62.248502
    [4] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [5] Qian Li, Wang Yu-Quan, Liu Liang, Fan Shou-Shan. Field emission of carbon nanotube under atmospheric pressure. Acta Physica Sinica, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [6] Wang Yi-Jun, Wang Liu-Ding, Yang Min, Liu Guang-Qing, Yan Cheng. Structural stability and field emission properties of carbon nanotubes doped by a boron atom and adsorbed with several H2O molecules. Acta Physica Sinica, 2010, 59(7): 4950-4954. doi: 10.7498/aps.59.4950
    [7] He Chun-Shan, Wang Wei-Liang, Chen Gui-Hua, Li Zhi-Bing. Image potential effect on field emission from arrays of carbon nanotubes. Acta Physica Sinica, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [8] Lei Da, Wang Wei-Biao, Zeng Le-Yong, Liang Jing-Qiu. Calculation of field enhancement factor of gated nanowire. Acta Physica Sinica, 2009, 58(5): 3383-3389. doi: 10.7498/aps.58.3383
    [9] Sun Hai-Jun, Liang Shi-Dong. Peierls phase transition and field emission of carbon nanotubes in a magnetic field. Acta Physica Sinica, 2008, 57(3): 1930-1934. doi: 10.7498/aps.57.1930
    [10] Liao Qing-Liang, Zhang Yue, Huang Yun-Hua, Qi Jun-Jie, Gao Zhan-Jun, Xia Lian-Sheng, Zhang Huang. Short-pulsed explosive field emission and plasma expansion of carbon nanotube cathodes. Acta Physica Sinica, 2008, 57(3): 1778-1783. doi: 10.7498/aps.57.1778
    [11] Qin Yu-Xiang, Hu Ming. Field emission properties of titanium carbide-modified carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [12] Bai Xin, Wang Ming-Sheng, Liu Yang, Zhang Geng-Min, Zhang Zhao-Xiang, Zhao Xing-Yu, Guo Deng-Zhu, Xue Zeng-Quan. Field evaporation of the end of a carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [13] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] Guo Da-Bo, Yuan Guang, Song Cui-Hua, Gu Chang-Zhi, Wang Qiang. Field emission of carbon nanotubes. Acta Physica Sinica, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [15] Lei Da, Zeng Le-Yong, Xia Yu-Xue, Chen Song, Liang Jing-Qiu, Wang Wei-Biao. Study on field enhancement of a normal-gated field emission nanowire cold cathode. Acta Physica Sinica, 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [16] Wang Miao, Shang Xue-Fu, Li Zhen-Hua, Wang Xin-Qing, Xu Ya-Bo. Calculation of field enhancement factor of the carbon nanotube array. Acta Physica Sinica, 2006, 55(2): 797-802. doi: 10.7498/aps.55.797
    [17] Ye Fan, Xie Er-Qing, Li Rui-Shan, Lin Hong-Feng, Zhang Jun, He De-Yan. Field emission properties of diamond-like carbon and carbon nitride films deposited by the electrochemical method. Acta Physica Sinica, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
    [18] Li Jun-Jie, Wu Han-Hua, Long Bei-Yu, Lü Xian-Yi, Hu Chao-Quan, Jin Zeng-Sun. The effect of nitrogen-implantation on the field-emission properties of CVD diamond films. Acta Physica Sinica, 2005, 54(3): 1447-1451. doi: 10.7498/aps.54.1447
    [19] Zhang Lan, Ma Hui-Zhong, Li Hui-Jun, Yang Shi-E, Yao Ning, Hu Huan-Ling, Zhang Bing-Lin. Fullerene-like nano-crystalline CNx films and its characteristics of field electron emission. Acta Physica Sinica, 2004, 53(3): 883-887. doi: 10.7498/aps.53.883
    [20] Li Jun-Jie, Zheng Wei-Tao, Bian Hai-Jiao, Lü Xian-Yi, Jiang Zhi-Gang, Bai Yi-Zhen, Jin Zeng-Sun, Zhao Yong-Nian. The effect of annealing on the field emission properties of amorphous CNx films. Acta Physica Sinica, 2003, 52(7): 1797-1801. doi: 10.7498/aps.52.1797
Metrics
  • Abstract views:  6998
  • PDF Downloads:  168
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2015
  • Accepted Date:  23 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map