Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effective wavelength and resonance characteristics of carbon nanotube optical antenna

Wu Xiao-Fang Xie Shu-Guo He Yun-Tao Li Li Li Xiao-Lu

Citation:

Effective wavelength and resonance characteristics of carbon nanotube optical antenna

Wu Xiao-Fang, Xie Shu-Guo, He Yun-Tao, Li Li, Li Xiao-Lu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The effective wavelength scaling theory for optical antennas indicates that an optical antenna does not respond to the wavelength of incident electromagnetic wave, but to a shorter effective wavelength which depends on the plasma wavelength and optical dielectric permittivity of the antenna material, and also on the geometric structure of the antenna. In this paper, based on the effective wavelength scaling theory for optical antennas and on the assumption that metallic carbon nanotube (CNT) can be described by a free electron gas according to the Drude model, the general relationship between effective wavelength and dielectric properties of the antenna material for a metallic carbon nanotube optical antenna is derived. According to this relationship, the investigation into the effective wavelength that a metallic CNT optical antenna responds to can be transferred to easier theoretical calculation for the dielectric properties of CNT, instead of exploring its plasma wavelength. Following first-principle calculations for dielectric properties of CNT with 4 diameter, the effective wavelength versus incident wavelength for each of two types of metallic 4 CNT antennas is investigated. In addition, the resonance characteristics of metallic 4 CNT dipole antennas are analyzed. It is shown that the effective wavelength approximately follows a linear relationship with wavelength of the incident light for the 4 metallic CNT antenna, which is consistent with the wavelength scaling theory. In addition, CNT optical antenna has good wavelength scaling performance compared with nano-antennas made of conventional metals like silver and gold; hence metallic CNTs as optical antennas are beneficial for constructing more compact devices. Moreover, according to the simulation results of resonance characteristics of metallic 4 CNT dipole antennas, there are several 4 metallic CNT dipole antennas with small difference in length meeting the resonance conditions for incident electromagnetic wave with a certain frequency, while there are one or more corresponding resonant modes in the optical and near-infrared spectral range concerned for a 4 metallic CNT dipole antenna with fixed length. Therefore, it is easier to meet the resonance conditions for CNT optical antenna than for conventional metal optical antenna, which also arises from the superior wavelength scaling ability of CNT. These advantages of CNT can help to miniaturize the optical antenna and improve the efficiency of energy conversion of the incident radiation in the optical and near-infrared spectral range. Reliability of the assumption and the theoretical process in this paper are validated by comparing the simulation results with existing investigations. Therefore, the theoretical investigations in this paper may provide a new approach to studying metallic CNT optical antennas. The simulation results also demonstrate the potential applications of CNT optical antenna, including solar energy harvesting and conversion.
      Corresponding author: He Yun-Tao, yuntaohe@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61101154).
    [1]

    Bharadwaj P, Deutsch B, Novotny L 2009 Adv. Opt. Photonics 1 438

    [2]

    Novotny L, van Hulst N 2011 Nature Photon. 5 83

    [3]

    Wessel J 1985 J. Opt. Soc. Am. B 2 1538

    [4]

    Pohl D W 2000 Near-Field Optics Seen as an Antenna Problem in Near-Field Optics: Principles and Applications (Singapore: World Scientific) pp9-21

    [5]

    Hecht B, Mhlschlegel P, Farahani J N, Eisler H, Pohl D W, Martin O J F, Biagioni P 2006 Chimia Int. J. Chem. 60 A765

    [6]

    Briones E, Briones J, Cuadrado A, Briones E, Briones J, Cuadrado A, Martinez-Anton J C, McMurtry S, Hehn M, Montaigne F, Alda J, Gonzalez F J 2014 Appl. Phys. Lett. 105 093108

    [7]

    Catchpole K R, Polman A 2008 Opt. Express 16 21793

    [8]

    Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S, Moerner W E 2006 Nano Lett. 6 355

    [9]

    Yuan Y Y, Yuan Z H, Li X N, Wu J, Zhan W T, Ye S 2015 Chin. Phys. B 24 262

    [10]

    Xiong Z C, Zhu L L, Liu C, Gao S M, Zhu J Q 2015 Acta Phys. Sin. 64 247301 (in Chinese) [熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强 2015 64 247301]

    [11]

    Geoffrey V M, Ji-Ho P, Amit A, Nanda K B, Das S K, Sailor M J, Bhatia S N 2009 Cancer Res. 69 3892

    [12]

    Iijima S 1991 Nature 354 56

    [13]

    Lan Y C, Wang Y, Ren Z F 2011 Adv. Phys. 60 553

    [14]

    Liu H J, Wen Y W, Miao L, Hu Y 2007 Nanotechnology 18 445708

    [15]

    Wang Y, Kempa K, Kimball B, Carlson J B, Benham G, Li W Z, Kempa T, Rybczynski J, Herczynski A, Ren Z F 2004 Appl. Phys. Lett. 85 2607

    [16]

    Ajayan P M, Stephan O, Colliex C, Trauth D 1994 Science 265 1212

    [17]

    Jin H, Hanson G W 2006 IEEE Trans. Nanotechnol. 5 766

    [18]

    Wang Y, Wu Q, Shi W, He X J, Yin J H 2009 Acta Phys. Sin. 58 919 (in Chinese) [王玥, 吴群, 施卫, 贺训军, 殷景华 2009 58 919]

    [19]

    Shuba M V, Slepyan G Y, Maksimenko S A, Thomsen C, Lakhtakia A 2009 Phys. Rev. B 79 155403

    [20]

    Wu Q, Wang Y, Wu Y M, Zhuang L L, Li L W, Gui T L 2010 Chin. Phys. B 19 067801

    [21]

    Huang Y, Yin W Y, Liu Q H 2008 IEEE Trans. Nanotechnol. 7 331

    [22]

    Kempa K, Rybczynski J, Huang Z, Gregorczyk K, Vidan A, Kimball B, Carlson J, Benham G, Wang Y, Herczynski A, Ren Z F 2007 Adv. Mater. 19 421

    [23]

    Wang Y, Wu Q, He X J, Zhang S Q, Zhang L L 2009 Chin. Phys. B 18 1801

    [24]

    Wang Y, Wu Q, Wu Y M, Fu J H, Wang D X, Wang Y, Li L W 2011 Acta Phys. Sin. 60 057801 (in Chinese) [王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟 2011 60 057801]

    [25]

    Hanson G W 2005 IEEE Trans. Antennas Propagat. 53 3426

    [26]

    Mhlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607

    [27]

    Novotny L 2007 Phys. Rev. Lett. 98 266802

    [28]

    Sawada S I, Hamada N 1992 Solid State Commun. 83 917

    [29]

    Peng L M, Zhang Z L, Xue Z Q, Wu Q D, Gu Z N, Pettifor D G 2000 Phys. Rev. Lett. 85 3249

    [30]

    Wang N, Tang Z K, Li G D, Chen J S 2000 Nature 408 50

    [31]

    Qin L C, Zhao X L, Hirahara K, Miyamoto Y, Ando Y, Iijima S 2000 Nature 408 50

    [32]

    Guo G Y, Chu K C, Wang D S, Duan C G 2004 Phys. Rev. B 69 205416

    [33]

    Liu H J, Chan C T 2002 Phys. Rev. B 66 115416

    [34]

    Qin W, Zhang Z H, Liu X H 2011 Acta Phys. Sin. 60 037302 (in Chinese) [秦威, 张振华, 刘新海 2011 60 037302]

    [35]

    Ahuja R, Auluck S, Wills J M, Alouani M, Johansson B, Eriksson O 1997 Phys. Rev. B 55 4999

    [36]

    Li J, Duan C G, Gu Z Q, Wang D S 1998 Phys. Rev. B 57 2222

    [37]

    Baroni S, de Grironcol S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [38]

    Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F, Quidant R 2008 Phys. Rev. Lett. 101 116805

    [39]

    Lin M F, Shung K W K 1994 Phys. Rev. B 50 17744

    [40]

    Tasaki S, Maekawa K, Yamabe T 1998 Phys. Rev. B 57 9301

    [41]

    Gai H, Wang J, Tian Q 2007 Appl. Opt. 46 2229

    [42]

    Hanson G W 2005 Proceedings of the Antennas and Propagation Society International Symposium, 2005 IEEE July 3-8, 2005 p247

    [43]

    Burke P J, Li S, Yu Z 2006 IEEE Trans. Nanotechnol. 5 314

    [44]

    Wu Q, Wang Y, Wu Y M, Zhang S Q, Li L W, Zhuang L L 2010 IET Microwaves Antennas Propag. 4 1500

    [45]

    Hanson G W 2008 IEEE Antennas Propag. Mag. 50 66

    [46]

    Sharma A, Singh V, Bougher T L, Cola B A 2015 Nature Nanotech. 10 1027

  • [1]

    Bharadwaj P, Deutsch B, Novotny L 2009 Adv. Opt. Photonics 1 438

    [2]

    Novotny L, van Hulst N 2011 Nature Photon. 5 83

    [3]

    Wessel J 1985 J. Opt. Soc. Am. B 2 1538

    [4]

    Pohl D W 2000 Near-Field Optics Seen as an Antenna Problem in Near-Field Optics: Principles and Applications (Singapore: World Scientific) pp9-21

    [5]

    Hecht B, Mhlschlegel P, Farahani J N, Eisler H, Pohl D W, Martin O J F, Biagioni P 2006 Chimia Int. J. Chem. 60 A765

    [6]

    Briones E, Briones J, Cuadrado A, Briones E, Briones J, Cuadrado A, Martinez-Anton J C, McMurtry S, Hehn M, Montaigne F, Alda J, Gonzalez F J 2014 Appl. Phys. Lett. 105 093108

    [7]

    Catchpole K R, Polman A 2008 Opt. Express 16 21793

    [8]

    Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S, Moerner W E 2006 Nano Lett. 6 355

    [9]

    Yuan Y Y, Yuan Z H, Li X N, Wu J, Zhan W T, Ye S 2015 Chin. Phys. B 24 262

    [10]

    Xiong Z C, Zhu L L, Liu C, Gao S M, Zhu J Q 2015 Acta Phys. Sin. 64 247301 (in Chinese) [熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强 2015 64 247301]

    [11]

    Geoffrey V M, Ji-Ho P, Amit A, Nanda K B, Das S K, Sailor M J, Bhatia S N 2009 Cancer Res. 69 3892

    [12]

    Iijima S 1991 Nature 354 56

    [13]

    Lan Y C, Wang Y, Ren Z F 2011 Adv. Phys. 60 553

    [14]

    Liu H J, Wen Y W, Miao L, Hu Y 2007 Nanotechnology 18 445708

    [15]

    Wang Y, Kempa K, Kimball B, Carlson J B, Benham G, Li W Z, Kempa T, Rybczynski J, Herczynski A, Ren Z F 2004 Appl. Phys. Lett. 85 2607

    [16]

    Ajayan P M, Stephan O, Colliex C, Trauth D 1994 Science 265 1212

    [17]

    Jin H, Hanson G W 2006 IEEE Trans. Nanotechnol. 5 766

    [18]

    Wang Y, Wu Q, Shi W, He X J, Yin J H 2009 Acta Phys. Sin. 58 919 (in Chinese) [王玥, 吴群, 施卫, 贺训军, 殷景华 2009 58 919]

    [19]

    Shuba M V, Slepyan G Y, Maksimenko S A, Thomsen C, Lakhtakia A 2009 Phys. Rev. B 79 155403

    [20]

    Wu Q, Wang Y, Wu Y M, Zhuang L L, Li L W, Gui T L 2010 Chin. Phys. B 19 067801

    [21]

    Huang Y, Yin W Y, Liu Q H 2008 IEEE Trans. Nanotechnol. 7 331

    [22]

    Kempa K, Rybczynski J, Huang Z, Gregorczyk K, Vidan A, Kimball B, Carlson J, Benham G, Wang Y, Herczynski A, Ren Z F 2007 Adv. Mater. 19 421

    [23]

    Wang Y, Wu Q, He X J, Zhang S Q, Zhang L L 2009 Chin. Phys. B 18 1801

    [24]

    Wang Y, Wu Q, Wu Y M, Fu J H, Wang D X, Wang Y, Li L W 2011 Acta Phys. Sin. 60 057801 (in Chinese) [王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟 2011 60 057801]

    [25]

    Hanson G W 2005 IEEE Trans. Antennas Propagat. 53 3426

    [26]

    Mhlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607

    [27]

    Novotny L 2007 Phys. Rev. Lett. 98 266802

    [28]

    Sawada S I, Hamada N 1992 Solid State Commun. 83 917

    [29]

    Peng L M, Zhang Z L, Xue Z Q, Wu Q D, Gu Z N, Pettifor D G 2000 Phys. Rev. Lett. 85 3249

    [30]

    Wang N, Tang Z K, Li G D, Chen J S 2000 Nature 408 50

    [31]

    Qin L C, Zhao X L, Hirahara K, Miyamoto Y, Ando Y, Iijima S 2000 Nature 408 50

    [32]

    Guo G Y, Chu K C, Wang D S, Duan C G 2004 Phys. Rev. B 69 205416

    [33]

    Liu H J, Chan C T 2002 Phys. Rev. B 66 115416

    [34]

    Qin W, Zhang Z H, Liu X H 2011 Acta Phys. Sin. 60 037302 (in Chinese) [秦威, 张振华, 刘新海 2011 60 037302]

    [35]

    Ahuja R, Auluck S, Wills J M, Alouani M, Johansson B, Eriksson O 1997 Phys. Rev. B 55 4999

    [36]

    Li J, Duan C G, Gu Z Q, Wang D S 1998 Phys. Rev. B 57 2222

    [37]

    Baroni S, de Grironcol S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [38]

    Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F, Quidant R 2008 Phys. Rev. Lett. 101 116805

    [39]

    Lin M F, Shung K W K 1994 Phys. Rev. B 50 17744

    [40]

    Tasaki S, Maekawa K, Yamabe T 1998 Phys. Rev. B 57 9301

    [41]

    Gai H, Wang J, Tian Q 2007 Appl. Opt. 46 2229

    [42]

    Hanson G W 2005 Proceedings of the Antennas and Propagation Society International Symposium, 2005 IEEE July 3-8, 2005 p247

    [43]

    Burke P J, Li S, Yu Z 2006 IEEE Trans. Nanotechnol. 5 314

    [44]

    Wu Q, Wang Y, Wu Y M, Zhang S Q, Li L W, Zhuang L L 2010 IET Microwaves Antennas Propag. 4 1500

    [45]

    Hanson G W 2008 IEEE Antennas Propag. Mag. 50 66

    [46]

    Sharma A, Singh V, Bougher T L, Cola B A 2015 Nature Nanotech. 10 1027

  • [1] Electron transport properties of carbon nanotubes with radial compression deformation. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211370
    [2] Wang Yan-Hong, Wang Lei, Wu Jing-Zhi. Nanoscale electromagnetic field interaction generated by microtubule vibration in neurons. Acta Physica Sinica, 2021, 70(15): 158703. doi: 10.7498/aps.70.20210421
    [3] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [4] Wang Yun, Lan Tian, Li Xiang, Shen Zhen-Min, Ni Guo-Qiang. Design research and performance analysis of compound parabolic concentrators as optical antennas in visible light communication. Acta Physica Sinica, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [5] Wang Yu-Bao, Qi Xiao-Hui, Shen Yang, Yao Yi-Lei, Xu Zhi-Jing, Pan Yu-Zhai. Ultra-long cavity multi-wavelength Yb-doped fiber laser mode-locked by carbon nanotubes. Acta Physica Sinica, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [6] Tang Jing-Jing, Feng Yan-Hui, Li Wei, Cui Liu, Zhang Xin-Xin. Thermal conductivity of carbon nanotube cable type composite. Acta Physica Sinica, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [7] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [8] Ma Tian-Hui, Zhuang Zhi-Ping, Ren Yu-Lan. First-principles calculations of optical and mechanical properties of LiBX2 (B= Ga, In; X= S, Se, Te). Acta Physica Sinica, 2012, 61(19): 197101. doi: 10.7498/aps.61.197101
    [9] Huang Qian, Zhang Xiao-Dan, Ji Wei-Wei, Wang Jing, Ni Jian, Li Lin-Na, Sun Jian, Geng Wei-Dong, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. Absorption and surface enhanced Raman scattering spectra caused by combined Ag nanoparticles with Al2O3 dielectric layer. Acta Physica Sinica, 2010, 59(4): 2753-2759. doi: 10.7498/aps.59.2753
    [10] Zhang Li-Juan, Hu Hui-Fang, Wang Zhi-Yong, Wei Yan, Jia Jin-Feng. Study on the electronic structure and optical properties of B-doped single-walled carbon nanotubes for formaldehyde adsorption. Acta Physica Sinica, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [11] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [12] Wang Yue, Wu Qun, Shi Wei, He Xun-Jun, Yin Jing-Hua. Terahertz antenna based on the carbon nano-tube in the nano-scopic domain. Acta Physica Sinica, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [13] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [14] Bai Xin, Wang Ming-Sheng, Liu Yang, Zhang Geng-Min, Zhang Zhao-Xiang, Zhao Xing-Yu, Guo Deng-Zhu, Xue Zeng-Quan. Field evaporation of the end of a carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [15] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [16] Zhang Hua, Chen Xiao-Hua, Zhang Zhen-Hua, Qiu Ming, Xu Long-Shan, Yang Zhi. The first-principles calcultion of the electronic structure of finite length carbon nanotubes grafted by carboxyl. Acta Physica Sinica, 2006, 55(6): 2986-2991. doi: 10.7498/aps.55.2986
    [17] Feng Wei, Yi Wen-Hui, Feng Yi-Yu, Wu Zi-Gang, Zhang Zhen-Zhong. In-situ polymerization and third-order nonlinear optical properties of polyaniline/carbon natotube composite. Acta Physica Sinica, 2006, 55(7): 3772-3777. doi: 10.7498/aps.55.3772
    [18] Yi Wen-Hui, Xu You-Long, Feng Wei, Wu Hong-Cai, Gao Chao. Third-order nonlinear response of conjugated polymer coated carbon nanotubes. Acta Physica Sinica, 2006, 55(7): 3736-3742. doi: 10.7498/aps.55.3736
    [19] Chen Jiang-Wei, Yang Lin-Feng. Electron transport properties of the finite double-walled carbon nanotubes. Acta Physica Sinica, 2005, 54(5): 2183-2187. doi: 10.7498/aps.54.2183
    [20] Liu Xue-Rong, Hu Bo, Liu Wen-Han, Gao Chen. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field microscopy. Acta Physica Sinica, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
Metrics
  • Abstract views:  6896
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  02 January 2016
  • Accepted Date:  02 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map