Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional finite volume simulation of the response of azimuth electromagnetic wave resistivity while drilling in inhomogeneous anisotropic formation

Wang Hao-Sen Yang Shou-Wen Bai Yan Chen Tao Wang Hong-Nian

Citation:

Three-dimensional finite volume simulation of the response of azimuth electromagnetic wave resistivity while drilling in inhomogeneous anisotropic formation

Wang Hao-Sen, Yang Shou-Wen, Bai Yan, Chen Tao, Wang Hong-Nian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The azimuth electromagnetic wave resistivity while drilling is a new type of well logging technique. It can real-time detect the formation boundary, realize geosteering and borehole imaging in order to keep the tool always drilling in the some meaning reservoir. For effectively optimizing tool parameters, proper explanation and evaluation of the data obtained by azimuth electromagnetic wave resistivity while drilling, the efficient numerical simulation algorithm is required. In this paper, we use the finite volume algorithm in the cylindrical coordinate to establish the corresponding numerical method so that we can effectively simulate the response of the tool in various complex environments and investigate the influences of the change in formation and tool parameters on the tool response. Therefore, according to the typical coil architecture of the instrument of azimuth electromagnetic wave resistivity while drilling, we first introduce the electrical and magnetic dyadic Green's functions in inhomogeneous anisotropic formation by the electrical current source in the cylindrical coordinate. Through superposition principle, we derive the integral formula to compute the electric field intensity excited by tilted transmitter coils and the induction electrical potential on tilted receiving coils both mounded on the drill collar. Then, we use the coupled electrical potentials of the dyadic Green's functions to overcome the low induction number problem during modeling the electrical fields in inhomogeneous anisotropic formation. Furthermore, we use Lebedev grid in both and z directions to reduce the number of grid nodes, and the standard method to compute the equivalent conductivity in heterogeneous units for enhancing the discrete precision. On the basis, by the three-dimensional finite volume method, we discrete the equations about the coupled electrical potentials in the cylindrical coordinates and obtain the large sparse algebraic equation sets about the coupled electrical potentials field on the Lebedev grid. A combination of incomplete LU decomposition with the bi-conjugate gradient stabilization is used to solve the numerical solution. Finally, we validate the algorithm by comparing the numerical results obtained by two different methods, study the effects of the drill collar, anisotropy, the tilted angles of both coil, and borehole on the instrument response in inhomogeneous anisotropic formation. The numerical results show that the tool response obtained by the three-dimensional finite volume algorithm in the cylindrical coordinate system in anisotropic formation accord with that those obtained by other algorithms. The drill collar, inhomogeneous anisotropic n the formation will lead to both the smaller amplitude ratio and the smaller phase difference. In addition, when the coils of both transmitting and receiving coils are tilted, the amplitude ratio and phase difference of the tool are more sensitive to the change in formation parameter.
      Corresponding author: Wang Hong-Nian, wanghn@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41574110) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX0520-001).
    [1]

    Li Q M, Omeragic D, Chou L, Yang L, Duong K, Smits J, Yang J 2005 SPWLA 46th Annual Logging Symposium New Orleans, USA, June 26-29, 2005 SPWLA-2005-UU

    [2]

    Seydoux J, Legendre E, Mirto E, Dupuis C, Denichou J M, Bennett N, Kutiev G, Kuchenbecker M, Morriss C, Schlumberger L Y 2014 SPWLA 55th Annual Logging Symposium Abu Dhabi, UAE, May 18-22, 2014 SPWLA-2014-LLLL

    [3]

    Neville T J, Weller G, Faivre O, Sun H 2007 SPE Reserv. Eval. Eng. 10 132

    [4]

    Coope D, Shen L C, Huang F S 1984 The Log Analyst 25 35

    [5]

    Zhou Q, Hilliker D J 1991 Geophysics 56 1738

    [6]

    Gianzero S, Merchant G A, Haugland M 1994 SPWLA 35th Annual Logging Symposium Tulsa, USA, June 19-25, 1994 SPWLA-1994-MM

    [7]

    Kennedy W D, Corley B D 2009 SPWLA 50th Annual Logging Symposium Houston, USA, June 21-24, 2009 SPWLA-2009-ZZ

    [8]

    Everett M E 2012 Surv. Geophys. 33 29

    [9]

    Wang H N, Tao H G, Yao J J, Chen G 2008 IEEE Trans. Geosci. Remote. 46 1525

    [10]

    Wang H N 2011 IEEE Trans. Geosci. Remote. 49 4483

    [11]

    Wang H N, Hu P, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 717 (in Chinese) [汪宏年, 胡平, 陶宏根, 杨守文 2012 地球 55 717]

    [12]

    Zhou J M, Wang H N, Yao J J, Yang S W, Ma Y Z 2012 Acta Phys. Sin. 61 089101 (in Chinese) [周建美, 汪宏年, 姚敬金, 杨守文, 马寅芝 2012 61 089101]

    [13]

    Yang S W, Wang J X, Zhou J M, Zhu T Z, Wang H N 2014 IEEE Trans. Geosci. Remote. 52 6911

    [14]

    Zhou J M, Wang J X, Shang Q L, Wang H N, Yin C C 2014 J. Geophys. Eng. 11 02500301

    [15]

    Wang J X, Wang H N, Zhou J M, Yang S W, Liu X J, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese) [汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春 2013 62 224101]

    [16]

    Wang H N, So P M, Yang S, Hoefer W J R, Du H L 2008 IEEE Trans. Geosci. Remote. 46 1134

    [17]

    Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote. 50 3383

    [18]

    Li F Y, Wen H, Fang Z Y 2013 Chin. Phys. B 22 120402

    [19]

    Shen J S 2003 Chin. J. Geophys. 46 281 (in Chinese) [沈金松 2003 地球 46 281]

    [20]

    Li J H 2014 Sci. China: Ser. D 44 928 (in Chinese) [李剑浩 2014 中国科学: 地球科学 44 928]

    [21]

    Liu N Z, Wang Z, Liu C 2015 Chin. J. Geophys. 58 1767 (in Chinese) [刘乃震, 王忠,刘策 2015 地球 58 1767]

    [22]

    Horstmann M, Sun K, Berger P, Olsen P A, Omeragic D, Crary S 2015 SPWLA 56th Annual Logging Symposium Long Beach, USA, July 18-22, 2015 SPWLA-2015-LLLL

    [23]

    Wang H N, Yang S D, Wang Y 1999 Oil Geophys. Prospect. 34 649 (in Chinese) [汪宏年, 杨善德, 王艳 1999 石油地球物理勘探 34 649]

    [24]

    Yao D H, Wang H N, Yang S W, Yang H L 2010 Chin. J. Geophys. 53 3026 (in Chinese) [姚东华, 汪宏年, 杨守文, 杨海亮 2010 地球 53 3026]

    [25]

    Xu Z F, Wu X P 2010 Chin. J. Geophys. 53 1931 (in Chinese) [徐志锋, 吴小平 2010 地球 53 1931]

    [26]

    Hue Y K, Teixeira F L 2006 IEEE Trans. Antenn. Propag. 54 1058

    [27]

    Zhang L, Chen H, Wang X M 2012 Chin. J. Geophys. 55 3493 (in Chinese) [张雷, 陈浩, 王秀明 2012 地球 55 3493]

    [28]

    Li H, Liu D J, Ma Z H, Gao X S 2012 Procedia Eng. 29 2122

    [29]

    Liu G S, Teixeira F L, Zhang G J 2012 IEEE Trans. Antenn. Propag. 60 318

    [30]

    Haber E, Asch U M 2001 Siam. J. Sci. Comput. 22 1943

    [31]

    Novo M S, Silva L C, Teixeira F L 2010 IEEE Trans. Geosci. Remote. 48 1151

    [32]

    Zhou J M, Zhang Y, Wang H N, Yang S W, Yin C C 2014 Acta Phys. Sin. 63 159101 (in Chinese) [周建美, 张烨, 汪宏年, 杨守文, 殷长春2014 63 159101]

    [33]

    Zhang Y, Wang H N, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 2141 (in Chinese) [张烨, 汪宏年, 陶宏根, 杨守文 2012 地球 55 2141]

    [34]

    Davydycheva S, Druskin V, Habashy T 2003 Geophysics 68 1525

    [35]

    Moskow S, Druskin V, Habashy T, Lee P, Davydycheva S 1999 Siam. J. Numer. Anal. 36 442

  • [1]

    Li Q M, Omeragic D, Chou L, Yang L, Duong K, Smits J, Yang J 2005 SPWLA 46th Annual Logging Symposium New Orleans, USA, June 26-29, 2005 SPWLA-2005-UU

    [2]

    Seydoux J, Legendre E, Mirto E, Dupuis C, Denichou J M, Bennett N, Kutiev G, Kuchenbecker M, Morriss C, Schlumberger L Y 2014 SPWLA 55th Annual Logging Symposium Abu Dhabi, UAE, May 18-22, 2014 SPWLA-2014-LLLL

    [3]

    Neville T J, Weller G, Faivre O, Sun H 2007 SPE Reserv. Eval. Eng. 10 132

    [4]

    Coope D, Shen L C, Huang F S 1984 The Log Analyst 25 35

    [5]

    Zhou Q, Hilliker D J 1991 Geophysics 56 1738

    [6]

    Gianzero S, Merchant G A, Haugland M 1994 SPWLA 35th Annual Logging Symposium Tulsa, USA, June 19-25, 1994 SPWLA-1994-MM

    [7]

    Kennedy W D, Corley B D 2009 SPWLA 50th Annual Logging Symposium Houston, USA, June 21-24, 2009 SPWLA-2009-ZZ

    [8]

    Everett M E 2012 Surv. Geophys. 33 29

    [9]

    Wang H N, Tao H G, Yao J J, Chen G 2008 IEEE Trans. Geosci. Remote. 46 1525

    [10]

    Wang H N 2011 IEEE Trans. Geosci. Remote. 49 4483

    [11]

    Wang H N, Hu P, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 717 (in Chinese) [汪宏年, 胡平, 陶宏根, 杨守文 2012 地球 55 717]

    [12]

    Zhou J M, Wang H N, Yao J J, Yang S W, Ma Y Z 2012 Acta Phys. Sin. 61 089101 (in Chinese) [周建美, 汪宏年, 姚敬金, 杨守文, 马寅芝 2012 61 089101]

    [13]

    Yang S W, Wang J X, Zhou J M, Zhu T Z, Wang H N 2014 IEEE Trans. Geosci. Remote. 52 6911

    [14]

    Zhou J M, Wang J X, Shang Q L, Wang H N, Yin C C 2014 J. Geophys. Eng. 11 02500301

    [15]

    Wang J X, Wang H N, Zhou J M, Yang S W, Liu X J, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese) [汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春 2013 62 224101]

    [16]

    Wang H N, So P M, Yang S, Hoefer W J R, Du H L 2008 IEEE Trans. Geosci. Remote. 46 1134

    [17]

    Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote. 50 3383

    [18]

    Li F Y, Wen H, Fang Z Y 2013 Chin. Phys. B 22 120402

    [19]

    Shen J S 2003 Chin. J. Geophys. 46 281 (in Chinese) [沈金松 2003 地球 46 281]

    [20]

    Li J H 2014 Sci. China: Ser. D 44 928 (in Chinese) [李剑浩 2014 中国科学: 地球科学 44 928]

    [21]

    Liu N Z, Wang Z, Liu C 2015 Chin. J. Geophys. 58 1767 (in Chinese) [刘乃震, 王忠,刘策 2015 地球 58 1767]

    [22]

    Horstmann M, Sun K, Berger P, Olsen P A, Omeragic D, Crary S 2015 SPWLA 56th Annual Logging Symposium Long Beach, USA, July 18-22, 2015 SPWLA-2015-LLLL

    [23]

    Wang H N, Yang S D, Wang Y 1999 Oil Geophys. Prospect. 34 649 (in Chinese) [汪宏年, 杨善德, 王艳 1999 石油地球物理勘探 34 649]

    [24]

    Yao D H, Wang H N, Yang S W, Yang H L 2010 Chin. J. Geophys. 53 3026 (in Chinese) [姚东华, 汪宏年, 杨守文, 杨海亮 2010 地球 53 3026]

    [25]

    Xu Z F, Wu X P 2010 Chin. J. Geophys. 53 1931 (in Chinese) [徐志锋, 吴小平 2010 地球 53 1931]

    [26]

    Hue Y K, Teixeira F L 2006 IEEE Trans. Antenn. Propag. 54 1058

    [27]

    Zhang L, Chen H, Wang X M 2012 Chin. J. Geophys. 55 3493 (in Chinese) [张雷, 陈浩, 王秀明 2012 地球 55 3493]

    [28]

    Li H, Liu D J, Ma Z H, Gao X S 2012 Procedia Eng. 29 2122

    [29]

    Liu G S, Teixeira F L, Zhang G J 2012 IEEE Trans. Antenn. Propag. 60 318

    [30]

    Haber E, Asch U M 2001 Siam. J. Sci. Comput. 22 1943

    [31]

    Novo M S, Silva L C, Teixeira F L 2010 IEEE Trans. Geosci. Remote. 48 1151

    [32]

    Zhou J M, Zhang Y, Wang H N, Yang S W, Yin C C 2014 Acta Phys. Sin. 63 159101 (in Chinese) [周建美, 张烨, 汪宏年, 杨守文, 殷长春2014 63 159101]

    [33]

    Zhang Y, Wang H N, Tao H G, Yang S W 2012 Chin. J. Geophys. 55 2141 (in Chinese) [张烨, 汪宏年, 陶宏根, 杨守文 2012 地球 55 2141]

    [34]

    Davydycheva S, Druskin V, Habashy T 2003 Geophysics 68 1525

    [35]

    Moskow S, Druskin V, Habashy T, Lee P, Davydycheva S 1999 Siam. J. Numer. Anal. 36 442

  • [1] He Xin-Bo, Wei Bing. Explicit and unconditionally stable finite-difference time-domain subgridding algorithm based on hanging variables. Acta Physica Sinica, 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] Sun Jia-Kun, Lin Chuan-Dong, Su Xian-Li, Tan Zhi-Cheng, Chen Ya-Lou, Ming Ping-Jian. Solution of the discrete Boltzmann equation: Based on the finite volume method. Acta Physica Sinica, 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [3] Chen Bo, Wang Hong-Nian, Yang Shou-Wen, Yin Chang-Chun. An efficient algorithm of three-dimensional explicit electromagnetic sensitivity matrix in marine controlled source electromagnetic measurements. Acta Physica Sinica, 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [4] Li Qiang, Li Wu-Ming. Numerical simulation on weld line development of injection molding in mold cavity with inserts. Acta Physica Sinica, 2016, 65(6): 064601. doi: 10.7498/aps.65.064601
    [5] Zhang Qi, Zhang Ran, Song Hai-Ming. A finite volume method for pricing the American lookback option. Acta Physica Sinica, 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [6] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [7] Zhou Jian-Mei, Zhang Ye, Wang Hong-Nian, Yang Shou-Wen, Yin Chang-Chun. Efficient simulation of three-dimensional marine controlled-source electromagnetic response in anisotropic formation by means of coupled potential finite volume method. Acta Physica Sinica, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [8] Zhu Ke-Bin, Nie Zai-Ping, Sun Xiang-Yang. Numerical modeling of the signal transmission by cables and electromagnetic coupling for logging while drilling. Acta Physica Sinica, 2013, 62(6): 060202. doi: 10.7498/aps.62.060202
    [9] Wang Fei, Wei Bing. Semi-analytical recursive convolution algorithm in the finite-difference time domain analysis of anisotropic dispersive medium. Acta Physica Sinica, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [10] Yang Bin-Xin, Ouyang Jie. Simulation of residual stress in viscoelastic mold filling process. Acta Physica Sinica, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [11] Yang Bin-Xin, Ouyang Jie, Li Xue-Juan. Dynamic simulation of fiber orientation in mold filling process in a complex cavity. Acta Physica Sinica, 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
    [12] Ning Fang-Li, Dong Liang, Zhang Wen-Zhi, Wang Kang. A finite volume algorithm for solving nonlinear standing waves in acoustic resonators. Acta Physica Sinica, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [13] Gu Wen-Juan, Pan Jing, Du Wei, Hu Jing-Guo. Measurement of magnetic anisotropyby ferromagnetic resonance. Acta Physica Sinica, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [14] Yang Li-Xia, Xie Ying-Tao, Kong Wa, Yu Ping-Ping, Wang Gang. A novel finite-difference time-domain scheme for electromagnetic scattering by stratified anisotropic plasma under oblique incidence condition. Acta Physica Sinica, 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [15] Chen Gui-Bo, Wang Hong-Nian, Yao Jing-Jin, Han Zi-Ye. Three-dimensional numerical modeling of marine controlled-source electromagnetic responses in a layered anisotropic seabed using integral equation method. Acta Physica Sinica, 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [16] Yang Li-Xia, Ge De-Biao, Wei Bing. Three-dimensional finite-difference time-domain implementation for anisotropic dispersive medium using recursive convolution method. Acta Physica Sinica, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [17] Yang Li-Xia, Ge De-Biao. Padé-finite-difference time-domain analysis of electromagnetic scattering in magnetic anisotropic medium. Acta Physica Sinica, 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
    [18] Du Qi-Zhen, Yang Hui-Zhu. Finite-element methods for viscoelastic and azimuthally anisotropic media. Acta Physica Sinica, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [19] Xiong Xiang-Yuan, He Kai-Yuan. . Acta Physica Sinica, 1995, 44(8): 1286-1290. doi: 10.7498/aps.44.1286
    [20] SHI HANG, CAI JIAN-HUA. POLARITIONS IN FINITE SUPERLATTICES. Acta Physica Sinica, 1988, 37(4): 683-687. doi: 10.7498/aps.37.683
Metrics
  • Abstract views:  6761
  • PDF Downloads:  263
  • Cited By: 0
Publishing process
  • Received Date:  13 November 2015
  • Accepted Date:  17 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map