-
Searching new superconducting materials and understanding their superconducting mechanisms are the important research directions in the condensed matter physics study. The recent discovery of aromatic hydrocarbon superconductors, including potassium-doped picene, phenanthrene and dibenzopentacene, has aroused considerable research interest of physicists and materials scientists. In this work, potassium-doped p-terphenyl is grown by sealing potassium and p-terphenyl with a mole ratio of 3 : 1 in high-vacuum glass tube and then annealed at 170 ℃ for 7 days or at 240 and 260 ℃ for 24 h. The crystal structure, molecular vibration, and magnetic property are characterized by using X-ray diffraction, Raman scattering, and superconducting quantum interference device. The combination of X-ray diffraction spectrum and Raman spectrum shows that besides potassium-doped p-terphenyl and KH, there exist C60 and graphite in annealed sample, which are found for the first time in the metal-doped aromatic hydrocarbon. Owing to the presence of potassium with high chemical activity, the C-H bond can be broken, resulting in dehydrogenated p-terphenyl with dangling bonds. Consequently, the recombination of dehydrogenated p-terphenyl will form graphite and C60. In addition, the red-shifts of partial peaks of p-terphenyl in Raman spectrum demonstrate that 4 s electron of doped potassium is transferred to C atom. For the samples annealed at 170 and 240 ℃, Curie paramagnetic behaviors are observed in the whole temperature region. On the other hand, in one of the samples annealed at 260 ℃, there exist three anomalous sharp decreases respectively at 17.86, 10.00 and 6.42 K in the zero-field cooling magnetic measurement. Previous studies indicated that the superconducting transition temperatures of potassium-doped C60 and potassium-doped graphite are about 18 K and 3 K. Therefore, it is reasonable to attribute the anomalous sharp decrease at 17.86 K to being produced by potassium-doped C60, while the anomalous sharp decreases at 10.00 and 6.42 K, which have not been reported yet, may be produced by potassium-doped p-terphenyl. The first principles calculations show that potassium-doped p-terphenyl lies in the metallic state, which can form superconductivity due to the electron-phonon interaction. Our results are useful for understanding the crystal growth and physical properties of metal-doped aromatic hydrocarbon organic superconductors. Furthermore, our findings provide a new routine to synthesizing C60 and graphite at low temperature.
-
Keywords:
- organic superconductor /
- p-terphenyl /
- potassium-doped /
- C60
[1] Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103
[2] Shen S J, Ying T P, Wang G, Jin S F, Zhang H, Lin Z P, Chen X L 2015 Chin. Phys. B 24 0117406
[3] Zheng X J, Huang Z B, Zou L J 2015 Chin. Phys. B 24 017404
[4] Ma L, Yu W Q 2013 Chin. Phys. B 22 087414
[5] Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76
[6] Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nature Commun. 2 507
[7] Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523
[8] Wang X F, Luo X G, Ying J J, Xiang Z J, Zhang S L, Zhang R R, Zhang Y H, Yan Y J, Wang A F, Cheng P 2012 J. Phys.- Condens. Matter 24 345701
[9] Artioli G A, Hammerath F, Mozzati M C, Carretta P, Corana F, Mannucci B, Margadonna S, Malavasi L 2015 Chem. Commun. 51 1092
[10] Kambe T, He X, Takahashi Y, Yamanari Y, Teranishi K, Mitamura H, Shibasaki S, Tomita K, Eguchi R, Goto H, Takabayashi Y, Kato T, Fujiwara A, Kariyado T, Aoki H, Kubozono Y 2012 Phys. Rev. B 86 214507
[11] Teranishi K, He X, Sakai Y, Izumi M, Goto H, Eguchi R, Takabayashi Y, Kambe T, Kubozono Y 2013 Phys. Rev. B 87 060505(R)
[12] Roth F, Bauer J, Mahns B, Bchner B, Knupferet M 2012 Phys. Rev. B 85 014513
[13] Xue M, Cao T, Wang D, Wu Y, Yang H, Dong X, He J, Li F, Chen G F 2012 Sci. Rep. 2 389
[14] Huang Z B, Zhang C, Lin H Q 2012 Sci. Rep. 2 922
[15] Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508
[16] Subedi A, Boeri L 2011 Phys. Rev. B 84 020508(R)
[17] Casula M, Calandra M, Profeta G, Mauri F 2011 Phys. Rev. Lett. 107 137006
[18] Taylor R, Langley G J, Kroto H W, Walton D R 1993 Nature 366 728
[19] Howard J B, McKinnon J T, Johnson M T 1992 J. Phys. Chem. 96 6657
[20] Howard J B, Lafleur A L, Makarovsky Y 1992 Carbon 30 1183
[21] Baum T, Loeffler S, Loeffler P 1992 Phys. Chem. 96 841
[22] Smalley R E 1992 Accounts. Chem. Res. 25 98
[23] Peres L O, Siesser M, Froyer G 2005 Synthetic Met. 155 450
[24] Fu Y C, Jin Y F 2010 J. Appl. Phys. 108 104909
[25] Zheng R H, Wei W M, Sun Y Y, Shi Q 2012 Vib. Spectrosc. 58 133
[26] Xiong Y M, Sun Z, Chen X H 2001 Acta Phys. Sin. 50 304 (in Chinese) [熊奕敏, 孙哲, 陈仙辉 2001 50 304]
[27] Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T M, Ramirez A P, Kortan A R 1991 Nature 350 600
[28] Belash I T, Bronnikov A D, Zharikov O V, Palnichenko A V 1990 Synthetic Met. 36 283
[29] Yan D D, Wang Z J, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1159 (in Chinese) [严大东, 王志坚, 徐铁峰,李文铸 1994 43 1159]
-
[1] Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103
[2] Shen S J, Ying T P, Wang G, Jin S F, Zhang H, Lin Z P, Chen X L 2015 Chin. Phys. B 24 0117406
[3] Zheng X J, Huang Z B, Zou L J 2015 Chin. Phys. B 24 017404
[4] Ma L, Yu W Q 2013 Chin. Phys. B 22 087414
[5] Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76
[6] Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nature Commun. 2 507
[7] Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523
[8] Wang X F, Luo X G, Ying J J, Xiang Z J, Zhang S L, Zhang R R, Zhang Y H, Yan Y J, Wang A F, Cheng P 2012 J. Phys.- Condens. Matter 24 345701
[9] Artioli G A, Hammerath F, Mozzati M C, Carretta P, Corana F, Mannucci B, Margadonna S, Malavasi L 2015 Chem. Commun. 51 1092
[10] Kambe T, He X, Takahashi Y, Yamanari Y, Teranishi K, Mitamura H, Shibasaki S, Tomita K, Eguchi R, Goto H, Takabayashi Y, Kato T, Fujiwara A, Kariyado T, Aoki H, Kubozono Y 2012 Phys. Rev. B 86 214507
[11] Teranishi K, He X, Sakai Y, Izumi M, Goto H, Eguchi R, Takabayashi Y, Kambe T, Kubozono Y 2013 Phys. Rev. B 87 060505(R)
[12] Roth F, Bauer J, Mahns B, Bchner B, Knupferet M 2012 Phys. Rev. B 85 014513
[13] Xue M, Cao T, Wang D, Wu Y, Yang H, Dong X, He J, Li F, Chen G F 2012 Sci. Rep. 2 389
[14] Huang Z B, Zhang C, Lin H Q 2012 Sci. Rep. 2 922
[15] Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508
[16] Subedi A, Boeri L 2011 Phys. Rev. B 84 020508(R)
[17] Casula M, Calandra M, Profeta G, Mauri F 2011 Phys. Rev. Lett. 107 137006
[18] Taylor R, Langley G J, Kroto H W, Walton D R 1993 Nature 366 728
[19] Howard J B, McKinnon J T, Johnson M T 1992 J. Phys. Chem. 96 6657
[20] Howard J B, Lafleur A L, Makarovsky Y 1992 Carbon 30 1183
[21] Baum T, Loeffler S, Loeffler P 1992 Phys. Chem. 96 841
[22] Smalley R E 1992 Accounts. Chem. Res. 25 98
[23] Peres L O, Siesser M, Froyer G 2005 Synthetic Met. 155 450
[24] Fu Y C, Jin Y F 2010 J. Appl. Phys. 108 104909
[25] Zheng R H, Wei W M, Sun Y Y, Shi Q 2012 Vib. Spectrosc. 58 133
[26] Xiong Y M, Sun Z, Chen X H 2001 Acta Phys. Sin. 50 304 (in Chinese) [熊奕敏, 孙哲, 陈仙辉 2001 50 304]
[27] Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T M, Ramirez A P, Kortan A R 1991 Nature 350 600
[28] Belash I T, Bronnikov A D, Zharikov O V, Palnichenko A V 1990 Synthetic Met. 36 283
[29] Yan D D, Wang Z J, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1159 (in Chinese) [严大东, 王志坚, 徐铁峰,李文铸 1994 43 1159]
Catalog
Metrics
- Abstract views: 7378
- PDF Downloads: 518
- Cited By: 0