Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Searching superconductivity in potassium-doped p-terphenyl

Gao Yun Wang Ren-Shu Wu Xiao-Lin Cheng Jia Deng Tian-Guo Yan Xun-Wang Huang Zhong-Bing

Citation:

Searching superconductivity in potassium-doped p-terphenyl

Gao Yun, Wang Ren-Shu, Wu Xiao-Lin, Cheng Jia, Deng Tian-Guo, Yan Xun-Wang, Huang Zhong-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Searching new superconducting materials and understanding their superconducting mechanisms are the important research directions in the condensed matter physics study. The recent discovery of aromatic hydrocarbon superconductors, including potassium-doped picene, phenanthrene and dibenzopentacene, has aroused considerable research interest of physicists and materials scientists. In this work, potassium-doped p-terphenyl is grown by sealing potassium and p-terphenyl with a mole ratio of 3 : 1 in high-vacuum glass tube and then annealed at 170 ℃ for 7 days or at 240 and 260 ℃ for 24 h. The crystal structure, molecular vibration, and magnetic property are characterized by using X-ray diffraction, Raman scattering, and superconducting quantum interference device. The combination of X-ray diffraction spectrum and Raman spectrum shows that besides potassium-doped p-terphenyl and KH, there exist C60 and graphite in annealed sample, which are found for the first time in the metal-doped aromatic hydrocarbon. Owing to the presence of potassium with high chemical activity, the C-H bond can be broken, resulting in dehydrogenated p-terphenyl with dangling bonds. Consequently, the recombination of dehydrogenated p-terphenyl will form graphite and C60. In addition, the red-shifts of partial peaks of p-terphenyl in Raman spectrum demonstrate that 4 s electron of doped potassium is transferred to C atom. For the samples annealed at 170 and 240 ℃, Curie paramagnetic behaviors are observed in the whole temperature region. On the other hand, in one of the samples annealed at 260 ℃, there exist three anomalous sharp decreases respectively at 17.86, 10.00 and 6.42 K in the zero-field cooling magnetic measurement. Previous studies indicated that the superconducting transition temperatures of potassium-doped C60 and potassium-doped graphite are about 18 K and 3 K. Therefore, it is reasonable to attribute the anomalous sharp decrease at 17.86 K to being produced by potassium-doped C60, while the anomalous sharp decreases at 10.00 and 6.42 K, which have not been reported yet, may be produced by potassium-doped p-terphenyl. The first principles calculations show that potassium-doped p-terphenyl lies in the metallic state, which can form superconductivity due to the electron-phonon interaction. Our results are useful for understanding the crystal growth and physical properties of metal-doped aromatic hydrocarbon organic superconductors. Furthermore, our findings provide a new routine to synthesizing C60 and graphite at low temperature.
      Corresponding author: Gao Yun, gaoyun@hubu.edu.cn;huangzb@hubu.edu.cn ; Huang Zhong-Bing, gaoyun@hubu.edu.cn;huangzb@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574076, 91221103).
    [1]

    Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103

    [2]

    Shen S J, Ying T P, Wang G, Jin S F, Zhang H, Lin Z P, Chen X L 2015 Chin. Phys. B 24 0117406

    [3]

    Zheng X J, Huang Z B, Zou L J 2015 Chin. Phys. B 24 017404

    [4]

    Ma L, Yu W Q 2013 Chin. Phys. B 22 087414

    [5]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76

    [6]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nature Commun. 2 507

    [7]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523

    [8]

    Wang X F, Luo X G, Ying J J, Xiang Z J, Zhang S L, Zhang R R, Zhang Y H, Yan Y J, Wang A F, Cheng P 2012 J. Phys.- Condens. Matter 24 345701

    [9]

    Artioli G A, Hammerath F, Mozzati M C, Carretta P, Corana F, Mannucci B, Margadonna S, Malavasi L 2015 Chem. Commun. 51 1092

    [10]

    Kambe T, He X, Takahashi Y, Yamanari Y, Teranishi K, Mitamura H, Shibasaki S, Tomita K, Eguchi R, Goto H, Takabayashi Y, Kato T, Fujiwara A, Kariyado T, Aoki H, Kubozono Y 2012 Phys. Rev. B 86 214507

    [11]

    Teranishi K, He X, Sakai Y, Izumi M, Goto H, Eguchi R, Takabayashi Y, Kambe T, Kubozono Y 2013 Phys. Rev. B 87 060505(R)

    [12]

    Roth F, Bauer J, Mahns B, Bchner B, Knupferet M 2012 Phys. Rev. B 85 014513

    [13]

    Xue M, Cao T, Wang D, Wu Y, Yang H, Dong X, He J, Li F, Chen G F 2012 Sci. Rep. 2 389

    [14]

    Huang Z B, Zhang C, Lin H Q 2012 Sci. Rep. 2 922

    [15]

    Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508

    [16]

    Subedi A, Boeri L 2011 Phys. Rev. B 84 020508(R)

    [17]

    Casula M, Calandra M, Profeta G, Mauri F 2011 Phys. Rev. Lett. 107 137006

    [18]

    Taylor R, Langley G J, Kroto H W, Walton D R 1993 Nature 366 728

    [19]

    Howard J B, McKinnon J T, Johnson M T 1992 J. Phys. Chem. 96 6657

    [20]

    Howard J B, Lafleur A L, Makarovsky Y 1992 Carbon 30 1183

    [21]

    Baum T, Loeffler S, Loeffler P 1992 Phys. Chem. 96 841

    [22]

    Smalley R E 1992 Accounts. Chem. Res. 25 98

    [23]

    Peres L O, Siesser M, Froyer G 2005 Synthetic Met. 155 450

    [24]

    Fu Y C, Jin Y F 2010 J. Appl. Phys. 108 104909

    [25]

    Zheng R H, Wei W M, Sun Y Y, Shi Q 2012 Vib. Spectrosc. 58 133

    [26]

    Xiong Y M, Sun Z, Chen X H 2001 Acta Phys. Sin. 50 304 (in Chinese) [熊奕敏, 孙哲, 陈仙辉 2001 50 304]

    [27]

    Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T M, Ramirez A P, Kortan A R 1991 Nature 350 600

    [28]

    Belash I T, Bronnikov A D, Zharikov O V, Palnichenko A V 1990 Synthetic Met. 36 283

    [29]

    Yan D D, Wang Z J, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1159 (in Chinese) [严大东, 王志坚, 徐铁峰,李文铸 1994 43 1159]

  • [1]

    Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103

    [2]

    Shen S J, Ying T P, Wang G, Jin S F, Zhang H, Lin Z P, Chen X L 2015 Chin. Phys. B 24 0117406

    [3]

    Zheng X J, Huang Z B, Zou L J 2015 Chin. Phys. B 24 017404

    [4]

    Ma L, Yu W Q 2013 Chin. Phys. B 22 087414

    [5]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76

    [6]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nature Commun. 2 507

    [7]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523

    [8]

    Wang X F, Luo X G, Ying J J, Xiang Z J, Zhang S L, Zhang R R, Zhang Y H, Yan Y J, Wang A F, Cheng P 2012 J. Phys.- Condens. Matter 24 345701

    [9]

    Artioli G A, Hammerath F, Mozzati M C, Carretta P, Corana F, Mannucci B, Margadonna S, Malavasi L 2015 Chem. Commun. 51 1092

    [10]

    Kambe T, He X, Takahashi Y, Yamanari Y, Teranishi K, Mitamura H, Shibasaki S, Tomita K, Eguchi R, Goto H, Takabayashi Y, Kato T, Fujiwara A, Kariyado T, Aoki H, Kubozono Y 2012 Phys. Rev. B 86 214507

    [11]

    Teranishi K, He X, Sakai Y, Izumi M, Goto H, Eguchi R, Takabayashi Y, Kambe T, Kubozono Y 2013 Phys. Rev. B 87 060505(R)

    [12]

    Roth F, Bauer J, Mahns B, Bchner B, Knupferet M 2012 Phys. Rev. B 85 014513

    [13]

    Xue M, Cao T, Wang D, Wu Y, Yang H, Dong X, He J, Li F, Chen G F 2012 Sci. Rep. 2 389

    [14]

    Huang Z B, Zhang C, Lin H Q 2012 Sci. Rep. 2 922

    [15]

    Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508

    [16]

    Subedi A, Boeri L 2011 Phys. Rev. B 84 020508(R)

    [17]

    Casula M, Calandra M, Profeta G, Mauri F 2011 Phys. Rev. Lett. 107 137006

    [18]

    Taylor R, Langley G J, Kroto H W, Walton D R 1993 Nature 366 728

    [19]

    Howard J B, McKinnon J T, Johnson M T 1992 J. Phys. Chem. 96 6657

    [20]

    Howard J B, Lafleur A L, Makarovsky Y 1992 Carbon 30 1183

    [21]

    Baum T, Loeffler S, Loeffler P 1992 Phys. Chem. 96 841

    [22]

    Smalley R E 1992 Accounts. Chem. Res. 25 98

    [23]

    Peres L O, Siesser M, Froyer G 2005 Synthetic Met. 155 450

    [24]

    Fu Y C, Jin Y F 2010 J. Appl. Phys. 108 104909

    [25]

    Zheng R H, Wei W M, Sun Y Y, Shi Q 2012 Vib. Spectrosc. 58 133

    [26]

    Xiong Y M, Sun Z, Chen X H 2001 Acta Phys. Sin. 50 304 (in Chinese) [熊奕敏, 孙哲, 陈仙辉 2001 50 304]

    [27]

    Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T M, Ramirez A P, Kortan A R 1991 Nature 350 600

    [28]

    Belash I T, Bronnikov A D, Zharikov O V, Palnichenko A V 1990 Synthetic Met. 36 283

    [29]

    Yan D D, Wang Z J, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1159 (in Chinese) [严大东, 王志坚, 徐铁峰,李文铸 1994 43 1159]

  • [1] Zhu Hong-Gang, Fu Ming-An, Ren Chuang, Gao Yun, Huang Zhong-Bing. Superparamagnetism of potassium-doped tris(diphenacyl) iron. Acta Physica Sinica, 2022, 71(8): 087501. doi: 10.7498/aps.71.20212128
    [2] He Wei-Di, Zhang Pei-Yuan, Liu Xiang, Tian Xue-Fen, Fu Xin-Ge, Deng Ai-Hong. Defects in H/He neutral beam irradiated potassium doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [3] Zhang Pei-Yuan, Deng Ai-Hong, Tian Xue-Fen, Tang Jun. Study of defects in potassium-doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2020, 69(9): 096103. doi: 10.7498/aps.69.20191792
    [4] Xuan Shu-Ke. First principles studies on molecular structure and electronic properties of K- and Ba-codoped phenanthrene. Acta Physica Sinica, 2017, 66(23): 237401. doi: 10.7498/aps.66.237401
    [5] Xu Zhi-Cheng, Zhong Wei-Rong. Transient kinetics of graphene bombarded by fullerene. Acta Physica Sinica, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [6] Li Qing, Li Hai-Qiang, Zhao Juan, Huang Jiang, Yu Jun-Sheng. Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cells. Acta Physica Sinica, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [7] Wan Li, Cao Liang, Zhang Wen-Hua, Han Yu-Yan, Chen Tie-Xin, Liu Ling-Yun, Guo Pan-Pan, Feng Jin-Yong, Xu Fa-Qiang. The interfacial electronic structures at FePc/TiO2(110) and FePc/C60 interface. Acta Physica Sinica, 2012, 61(18): 186801. doi: 10.7498/aps.61.186801
    [8] Liu Rui, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Cao Xiao-Ning, Kong Chao, Cao Wen-Zhe, Gong Wei. Inserting various cathodic buffer layers to enhancethe performance of Pentacene/C60based organic solar cells. Acta Physica Sinica, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [9] Gao Hong, Zhu Wei-Hua, Tang Chun-Mei, Geng Fang-Fang, Yao Chang-Da, Xu Yun-Ling, Deng Kai-Ming. Density functional calculation on the geometric structure and electronic properties of the endohedral fullerene N2@C60. Acta Physica Sinica, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [10] Chen Xiang-Lei, Kong Wei, Weng Hui-Min, Ye Bang-Jiao. Analysis of positron annihilation in carbon allotropes. Acta Physica Sinica, 2008, 57(5): 3271-3275. doi: 10.7498/aps.57.3271
    [11] He Shao-Long, Li Hong-Nian, Li Hai-Yang, Zhang Han-Jie, Lü Bin, He Pi-Mo, Bao Shi-Ning, Xu Ya-Bo. X-ray photoemission studies of Yb intercalated C60 thin film. Acta Physica Sinica, 2004, 53(3): 915-921. doi: 10.7498/aps.53.915
    [12] Li Hong-Nian. Phase evolution and electronic states ofRb-intercalated C60 single crystals. Acta Physica Sinica, 2004, 53(1): 248-253. doi: 10.7498/aps.53.248
    [13] Qiu Qing-Chun. The phonon and energy splitting in the D3d minima for the T1u×hg Jahn-Teller system. Acta Physica Sinica, 2004, 53(7): 2292-2298. doi: 10.7498/aps.53.2292
    [14] Qiu Qing-Chun. The anisotropic phenomena in the D5d minima for the T1uhg Jahn-Teller system. Acta Physica Sinica, 2003, 52(4): 958-969. doi: 10.7498/aps.52.958
    [15] CAO WAN-QIANG, CHENG YUAN-FA, LIU JUN-DIAO, XING GUO-KUEN. ORIENTATIONAL POPULATION AND RELAXATION BEHAVIOR OF C60 MOLECULES BET WEEN ORDER-DISORDER PHASE TRANSITION AND GLASSY TRANSITION. Acta Physica Sinica, 2000, 49(10): 2001-2006. doi: 10.7498/aps.49.2001
    [16] YAO JIANG-HONG, XU JING-JUN, ZHANG GUANG-YIN, ZOU YUN-JUAN, CHEN GUANG-HUA, YANG RU, JIN YONG-FAN. EFFECT OF MEDIUM-ENERGY RADIATION ON C60 FILMS. Acta Physica Sinica, 1999, 48(7): 1269-1274. doi: 10.7498/aps.48.1269
    [17] ZHOU BIN, WANG JUE, SHEN JUN, WENG ZHI-NONG, DENG ZHONG-SHENG, ZHAO LI, LI YU-FEN. PREPARATION OF FULLERENCE DOPED SILICA AEROGELS AND THE STUDY OF PHOTOLUMINESCENCE- PROPERTIES. Acta Physica Sinica, 1997, 46(7): 1437-1443. doi: 10.7498/aps.46.1437
    [18] FU ROU-LI, YE HONG-JUAN, FU RONG-TANG, RAO XUE-SONG, SUN XIN. THE EFFECT OF ATOMIC DISORDER FLUCTUATION ON C60. Acta Physica Sinica, 1997, 46(4): 694-701. doi: 10.7498/aps.46.694
    [19] CHEN GUANG-HUA, YAO JIANG-HONG, WANG YONG-QIAN, ZOU YUN-JUAN. ELECTRICAL PROPERTIES OF SULFUR-DOPED C60 FILMS. Acta Physica Sinica, 1997, 46(6): 1183-1187. doi: 10.7498/aps.46.1183
    [20] HUANG QING-PENG, FU RONG-TANG, SUN XIN, FU ROU-LI. ELECTRON CORRELATION EFFECT ON C60 EXCITON POLARON. Acta Physica Sinica, 1994, 43(11): 1833-1839. doi: 10.7498/aps.43.1833
Metrics
  • Abstract views:  7378
  • PDF Downloads:  518
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2015
  • Accepted Date:  13 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map