-
Synthesis and exploration of intriguing physical properties of alkali-metal-doped aromatic hydrocarbons have been the important research topics in the fields of physics, chemistry and materials science. In this work, a powder sample of potassium-doped tris(diphenacyl) iron molecular crystal is prepared by the high-vacuum annealing method. The X-ray diffraction results show that the crystal structure of the synthesized sample is different from that of pristine tris(diphenacyl)iron. The direct current (DC) magnetic susceptibilitiy shows a pronounced hump structure near 8.0 K, which is distinct from the paramagnetism of pristine material in the whole temperature range of 1.8–300 K. The alternating current (AC) magnetic susceptibility shows that the hump has a significant frequency dependence, which can safely rule out the possibility of antiferromagnetism. The combination of the Vogel-Fulcher law, the Néel-Brown model and the critical slowing down model reveals that the hump originates from superparamagnetism with a blocking temperature (TB) of about 8.0 K. According to the results of Raman spectroscopy, it can be confirmed that the 4s electrons of potassium in the doped material are transferred to the benzene ring of tris(diphenacyl)iron, causing the characteristic Raman modes to be red-shifted and the local magnetic moment to form. Our work is of great significance in exploring alkali-metal-doped aromatic hydrocarbons, and provides a new route for searching organic magnetic materials.
-
Keywords:
- tris(diphenacyl) iron /
- potassium doped /
- high vacuum annealing method /
- superparamagnetism
[1] 高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵 2016 65 077402
Google Scholar
Gao Y, Wang R S, Wu X L, Cheng J, Deng T G, Yan X W, Huang Z B 2016 Acta Phys. Sin. 65 077402
Google Scholar
[2] 轩书科 2017 66 237401
Google Scholar
Xuan S K 2017 Acta Phys. Sin. 66 237401
Google Scholar
[3] Zhang J L, Whitehead G F S, Manning T D, Stewart D, Hiley C I, Pitcher M J, Jansat S, Prassides K, Rosseinsky M J 2018 J. Am. Chem. Soc. 140 18162
Google Scholar
[4] Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76
Google Scholar
[5] Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2012 Nature Commun. 2 507
[6] Xue M Q, Cao T B, Wang D M, Wu Y, Yang H X, Dong X L, He J B, Li F W, Chen G F 2012 Sci. Rep. 2 389
Google Scholar
[7] Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523
Google Scholar
[8] Takabayashi Y, Menelaou M, Tamura H, Takemori N, Koretsune T, Štefančič A, Klupp G, Buurma C A J, Nomura Y, Arita R, Arčon D, Rosseinsky M J, Prassides K 2017 Nature Chem. 9 635
Google Scholar
[9] Štefančič A, Klupp G, Knaflič T, Yufit D S, Tavčar G, Potočnik A, Beeby A, Arčon D 2017 J. Phys. Chem. C 127 14864
[10] Phan Q T N, Heguri S, Tamura H, Nakano T, Nozue Y, Tanigaki K 2016 Phys. Rev. B 93 075130
Google Scholar
[11] Fu M A, Wang R S, Yang H, Zhang P Y, Zhang C F, Chen X J, Gao Y, Huang Z B 2021 Carbon 173 587
Google Scholar
[12] Wang R S, Gao Y, Huang Z B, Chen X J 2017 arXiv: 1703.06641v1
[13] Liu W H, Lin H, Kang R Z, Zhang Y, Zhu X Y, Wen H H 2017 Phys. Rev. B 96 224501
Google Scholar
[14] Wang R S, Cheng J, Wu X L, Yang H, Chen X J, Gao Y, Huang Z B 2018 J. Chem. Phys. 149 144502
Google Scholar
[15] Wang R S, Yang H, Cheng J, Wu X L, Fu M A, Chen X J, Gao Y, Huang Z B. 2019 J. Phys. Chem. C 123 19105
Google Scholar
[16] Wang R S, Chen L C, Yang H, Fu M A, Cheng J, Wu X L, Gao Y, Huang Z B, Chen X J 2019 Phys. Chem. Chem. Phys. 21 25976
Google Scholar
[17] Rostamnejadi A, Salamati H, Kameli P, Ahmadvand H 2009 J. Magn. Magn. Mater. 321 3126
Google Scholar
[18] Venkateswarlu B, Krishnan R H, Chelvane J A, Babu P D, Kumar N H 2019 J. Alloy. Compd. 777 373
Google Scholar
[19] Shtrikman S, Wohlfarth E P 1918 Phys. Lett. 85A 467
[20] Goya G F, Berquό T S, Fonseca F C 2003 J. Appl. Phys. 94 3520
Google Scholar
[21] Dormann J L, Fiorani D, Cherkaoui R, Tronc E, Lucari F, DʹOrazio F, Spinu L, Noguès M, Kachkchi H, Jolivet J P 1999 J. Magn. Magn. Mater. 203 23
Google Scholar
[22] Sharma S K, Kumar R, Kumar S, Kumar V V S, Knobel M, Reddy V R, Banerjee A, Singh M 2007 Solid State Commun. 141 203
Google Scholar
[23] Jonason K, Mattsson J, Nordblad P 1996 Phys. Rev. B 53 6507
Google Scholar
[24] Nam D N H, Jonason K, Nordblad P, Khiem N V, Phuc N X 1999 Phys. Rev. B 59 4189
Google Scholar
[25] Typek J, Guskos N, Zolnierkiewicz G, Lendzion-Bielun Z, Pachla A, Narkiewicz U 2018 Eur. Phys. J. Appl. Phys. 83 10402
Google Scholar
[26] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 60 108501
Google Scholar
Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501
Google Scholar
[27] Carvell J, Ayieta E, Gavrin A, Cheng R H, Shah V R, Sokol P 2010 J. Appl. Phys. 107 103913
Google Scholar
[28] Nekoei A R, Vakili M, Hakimi-Tabar M, TayyariS F, Afzali R, Kjaergaard H G 2014 Spectrochim. Acta A 128 272
Google Scholar
-
图 4 掺杂样品K3DPF-A的PPMS磁性测试结果 (a) K3DPF-A在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线, 插图为M-H曲线; (b) K3DPF-A在不同磁场下的ZFC曲线; (c) K3DPF-A交流磁化率曲线的实部; (d) K3DPF-A交流磁化率曲线的虚部
Figure 4. The PPMS magnetic results of the doped sample K3DPF-A: (a) The ZFC and FC DC susceptibility curves of K3DPF-A under an external magnetic field of 20 Oe. The inset is the M-H curve. (b) ZFC curves of K3DPF-A under different magnetic fields. (c) The real part and (d) the imaginary part of AC magnetic susceptibility for K3DPF-A.
图 5 掺杂样品K3DPF-B的PPMS磁性测试结果 (a) K3DPF-B在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线; (b) K3DPF-B在1.8 K与300 K下的M-H曲线
Figure 5. The PPMS magnetic results of the doped sample K3DPF-B: (a) The ZFC and FC DC susceptibility curves of K3DPF-B under an external magnetic field of 20 Oe; (b) M-H curves of K3DPF-B at 1.8 and 300 K.
表 1 纯DPF和钾掺杂DPF相应的拉曼模式频率的峰位及对比
Table 1. Comparison of Raman modes of pure DPF and potassium-doped tris(diphenacyl)iron.
number Assignment $ \omega /{\text{c}}{{\text{m}}^{ - 1}} $(DPF) $ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (K3DPF) $ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (Cu-DBM) $ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (CAC) $ \omega /{\text{c}}{{\text{m}}^{ - 1}} $(KCAC) 1 υ(s)Fe(—O)2 561.0 522.1 567.0 2 υ(s)C—C—C 1000.6 1000.4 1002.0 996.4 987.2 3 υ(s)C—C—C 1299.5 1275.7 1290.0 1295.1 1289.6 4 υ(s)C—C—C 1320.9 1309.2 1317.0 1328.9 1322.0 5 υ(s)C—C—C 1491.6 1488.1 1492.0 1491.7 1483.1 6 υ(s)C =O 1599.5 1592.8 1596.0 1606.1 1588.1 -
[1] 高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵 2016 65 077402
Google Scholar
Gao Y, Wang R S, Wu X L, Cheng J, Deng T G, Yan X W, Huang Z B 2016 Acta Phys. Sin. 65 077402
Google Scholar
[2] 轩书科 2017 66 237401
Google Scholar
Xuan S K 2017 Acta Phys. Sin. 66 237401
Google Scholar
[3] Zhang J L, Whitehead G F S, Manning T D, Stewart D, Hiley C I, Pitcher M J, Jansat S, Prassides K, Rosseinsky M J 2018 J. Am. Chem. Soc. 140 18162
Google Scholar
[4] Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76
Google Scholar
[5] Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2012 Nature Commun. 2 507
[6] Xue M Q, Cao T B, Wang D M, Wu Y, Yang H X, Dong X L, He J B, Li F W, Chen G F 2012 Sci. Rep. 2 389
Google Scholar
[7] Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523
Google Scholar
[8] Takabayashi Y, Menelaou M, Tamura H, Takemori N, Koretsune T, Štefančič A, Klupp G, Buurma C A J, Nomura Y, Arita R, Arčon D, Rosseinsky M J, Prassides K 2017 Nature Chem. 9 635
Google Scholar
[9] Štefančič A, Klupp G, Knaflič T, Yufit D S, Tavčar G, Potočnik A, Beeby A, Arčon D 2017 J. Phys. Chem. C 127 14864
[10] Phan Q T N, Heguri S, Tamura H, Nakano T, Nozue Y, Tanigaki K 2016 Phys. Rev. B 93 075130
Google Scholar
[11] Fu M A, Wang R S, Yang H, Zhang P Y, Zhang C F, Chen X J, Gao Y, Huang Z B 2021 Carbon 173 587
Google Scholar
[12] Wang R S, Gao Y, Huang Z B, Chen X J 2017 arXiv: 1703.06641v1
[13] Liu W H, Lin H, Kang R Z, Zhang Y, Zhu X Y, Wen H H 2017 Phys. Rev. B 96 224501
Google Scholar
[14] Wang R S, Cheng J, Wu X L, Yang H, Chen X J, Gao Y, Huang Z B 2018 J. Chem. Phys. 149 144502
Google Scholar
[15] Wang R S, Yang H, Cheng J, Wu X L, Fu M A, Chen X J, Gao Y, Huang Z B. 2019 J. Phys. Chem. C 123 19105
Google Scholar
[16] Wang R S, Chen L C, Yang H, Fu M A, Cheng J, Wu X L, Gao Y, Huang Z B, Chen X J 2019 Phys. Chem. Chem. Phys. 21 25976
Google Scholar
[17] Rostamnejadi A, Salamati H, Kameli P, Ahmadvand H 2009 J. Magn. Magn. Mater. 321 3126
Google Scholar
[18] Venkateswarlu B, Krishnan R H, Chelvane J A, Babu P D, Kumar N H 2019 J. Alloy. Compd. 777 373
Google Scholar
[19] Shtrikman S, Wohlfarth E P 1918 Phys. Lett. 85A 467
[20] Goya G F, Berquό T S, Fonseca F C 2003 J. Appl. Phys. 94 3520
Google Scholar
[21] Dormann J L, Fiorani D, Cherkaoui R, Tronc E, Lucari F, DʹOrazio F, Spinu L, Noguès M, Kachkchi H, Jolivet J P 1999 J. Magn. Magn. Mater. 203 23
Google Scholar
[22] Sharma S K, Kumar R, Kumar S, Kumar V V S, Knobel M, Reddy V R, Banerjee A, Singh M 2007 Solid State Commun. 141 203
Google Scholar
[23] Jonason K, Mattsson J, Nordblad P 1996 Phys. Rev. B 53 6507
Google Scholar
[24] Nam D N H, Jonason K, Nordblad P, Khiem N V, Phuc N X 1999 Phys. Rev. B 59 4189
Google Scholar
[25] Typek J, Guskos N, Zolnierkiewicz G, Lendzion-Bielun Z, Pachla A, Narkiewicz U 2018 Eur. Phys. J. Appl. Phys. 83 10402
Google Scholar
[26] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 60 108501
Google Scholar
Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501
Google Scholar
[27] Carvell J, Ayieta E, Gavrin A, Cheng R H, Shah V R, Sokol P 2010 J. Appl. Phys. 107 103913
Google Scholar
[28] Nekoei A R, Vakili M, Hakimi-Tabar M, TayyariS F, Afzali R, Kjaergaard H G 2014 Spectrochim. Acta A 128 272
Google Scholar
Catalog
Metrics
- Abstract views: 5004
- PDF Downloads: 77
- Cited By: 0