-
By using nonlinear Schrdinger equation including Raman gain and self-steepening but ignoring fiber loss situation, the propagation characteristics of Airy pulse are simulated and analyzed in the single-mode fiber. Simulations show that Airy pulse can be converted into soliton and its propagation direction is skewed due to the effects of Raman gain and self-steepening under a certain condition. In time domain, the number of small peaks of Airy pulse reduces rapidly. Airy pulse becomes a peak structure containing a main peak and sub-peaks where the energies can be ignored by changing the coefficient a reasonablely, which is approximated as the soliton structure. Therefore, Airy pulse is regarded as transforming into soliton. Meanwhile, in the case of small values b, there exists a significant difference in shape between Airy pulse and soliton. With the value of parameter b increasing slowly, the shape of Airy pulse is very close to soliton's, therefore Airy pulse can transform into soliton by changing value b reasonablely. Compared with by changing b value, Airy pulse convered into the soliton is stable by changing the a value reasonablely. Simultaneously, with the increases of values of coefficient a and amplitude b, the time-shift of Airy pulse increases. However, the time-shift of Airy pulse would decrease when Raman gain and Self-steepening become strong, no matter what the values of a and b are. Further, the acceleration properties of Airy pulse are investigated. It is found that Airy pulse autoacceleration is not a stable value at the beginning but it gradually stabilizes with the increase of transmission distance. The reason is that the energies of secondary peaks exert a tremendous influence on the main lobe of Airy pulse at the beginning, however, secondary peaks diffuse fast with the increase of transmission and then the influence can be ignored to a certain extent. So, the main peak gradually stabilizes with the increase of transmission distance.
-
Keywords:
- Airy pulse /
- Raman gain /
- self-steepening /
- self-acceleration characteristics
[1] Berry M V, Balazs N L 1979 Am. J. Phys. 47 264
[2] Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979
[3] Siviloglou G A, Brokly J, Dogariu A, Christodoulides D 2007 Phys. Rev. Lett. 99 213901
[4] Zhang L F, Liu K, Zhang H Z, Zhang J G, Li Y, Fan D Y 2015 Opt. Express 23 2566
[5] Cai W Y, Matthew S M, Christodoulides D N, Wen S C 2014 Opt. Commun. 316 127
[6] Yiska F, Amitay R, Marom D M 2011 Opt. Express 19 17299
[7] Baldeck P L, Alfano R R, Agrawal G P 1988 Appl. Phys. Lett. 52 1939
[8] Xu J, Liu J, Jia J, Wang Y T, Xie J H, Liang X Y 2010 J. Opt. 12 5705
[9] Cottrell D M, Davis J A, Hazard T M 2009 Opt. Lett. 34 2634
[10] Bandres M A, Gutierrez G C 2007 Opt. Express 15 16719
[11] Broky J, Siviloglou G A, Christodoulides D N 2008 Opt. Express 16 12880
[12] Zhang P, Wang S, Liu X, Lu C, Chen Z G, Zhang X 2011 Opt. Lett. 36 3191
[13] Siviloglou G A, Broky J, Dogaru A, Christodoulides D N 2008 Opt. Lett. 33 207
[14] Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Acta Phys. Sin. 64 054207 (in Chinese) [于宇, 贾维国, 闫青, 门克内木乐, 张俊平 2015 64 054207]
[15] Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Chin. Phys. B 24 084210
[16] Yan Q, Jia W G, Yu Y, Zhang J P, Menke N M L 2015 Acta Phys. Sin. 64 184211 (in Chinese) [闫青, 贾维国, 于宇, 张俊萍, 门克内木乐 2015 64 184211]
[17] Zhu K Z, Jia W G, Zhang K, Yu Y, Zhang J P, Menke N M L 2016 Acta Phys. Sin. 65 024208 (in Chinese) [朱坤占, 贾维国, 张魁, 于宇, 张俊平, 门克内木乐 2016 65 024208]
[18] Polyn K P, Kolesik M, Moloney J V, Sivilogou G A, Christodoulides D N 2009 Science 324 229
-
[1] Berry M V, Balazs N L 1979 Am. J. Phys. 47 264
[2] Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979
[3] Siviloglou G A, Brokly J, Dogariu A, Christodoulides D 2007 Phys. Rev. Lett. 99 213901
[4] Zhang L F, Liu K, Zhang H Z, Zhang J G, Li Y, Fan D Y 2015 Opt. Express 23 2566
[5] Cai W Y, Matthew S M, Christodoulides D N, Wen S C 2014 Opt. Commun. 316 127
[6] Yiska F, Amitay R, Marom D M 2011 Opt. Express 19 17299
[7] Baldeck P L, Alfano R R, Agrawal G P 1988 Appl. Phys. Lett. 52 1939
[8] Xu J, Liu J, Jia J, Wang Y T, Xie J H, Liang X Y 2010 J. Opt. 12 5705
[9] Cottrell D M, Davis J A, Hazard T M 2009 Opt. Lett. 34 2634
[10] Bandres M A, Gutierrez G C 2007 Opt. Express 15 16719
[11] Broky J, Siviloglou G A, Christodoulides D N 2008 Opt. Express 16 12880
[12] Zhang P, Wang S, Liu X, Lu C, Chen Z G, Zhang X 2011 Opt. Lett. 36 3191
[13] Siviloglou G A, Broky J, Dogaru A, Christodoulides D N 2008 Opt. Lett. 33 207
[14] Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Acta Phys. Sin. 64 054207 (in Chinese) [于宇, 贾维国, 闫青, 门克内木乐, 张俊平 2015 64 054207]
[15] Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Chin. Phys. B 24 084210
[16] Yan Q, Jia W G, Yu Y, Zhang J P, Menke N M L 2015 Acta Phys. Sin. 64 184211 (in Chinese) [闫青, 贾维国, 于宇, 张俊萍, 门克内木乐 2015 64 184211]
[17] Zhu K Z, Jia W G, Zhang K, Yu Y, Zhang J P, Menke N M L 2016 Acta Phys. Sin. 65 024208 (in Chinese) [朱坤占, 贾维国, 张魁, 于宇, 张俊平, 门克内木乐 2016 65 024208]
[18] Polyn K P, Kolesik M, Moloney J V, Sivilogou G A, Christodoulides D N 2009 Science 324 229
Catalog
Metrics
- Abstract views: 7288
- PDF Downloads: 196
- Cited By: 0