-
根据考虑拉曼效应后的双折射光纤所满足的非线性相干耦合薛定谔方程, 推导出了当沿两个偏振轴入射两束不同波长的激光脉冲时所产生的增益表达式. 通过与入射相同频率的光脉冲所产生增益的对比, 在考虑拉曼效应的情况下, 讨论了入射不同频率光脉冲对增益谱的影响. 结果表明, 在正常色散区和反常色散区, 当输入两束激光脉冲频率不同时, 增益谱较输入相同频率激光脉冲时产生了明显的变化, 其外侧的斯托克斯部分和反斯托克斯部分增益峰, 随着群速度失配的增加强度明显加强、偏离中心频率, 可以用于提取太赫兹脉冲.当两偏振模处于不同色散区时, 增益谱与不考虑拉曼效应时也存在明显的不同, 增益谱的对称性遭到破坏, 斯托克斯部分的增益峰强度要明显高于反斯托克斯部分.The expression of gain is derived from nonlinear Schrödinger equation with consideration of raman effect when two laser pulses with different wavelengths are emitted into birefringence fiber along two polarization axes. The gain characteristic input laser pulses of different frequencies are revealed by comparing the laser pulses of identical frequency. The result show that the gain spectra will apparently differ when input laser pulses have different frequencies in normal dispersion regime and anomalous dispersion regime. The intensities of outboard gain peak about stokes part and anti-stokes part increase and frequency deviates from central frequency as group velocity mismatch increases. Therefore, the THz pulse can be extracted. The gain spectrum will be apparently different from that with no Raman effect taken into account, when the two polarization modes, are in different dispersion regimes. The symmetry of gain spectrum will be damaged. The intensity of gain peak of stokes is apparently stronger than the peak of anti-stoke.
-
Keywords:
- different frequency propagation regimes /
- polarization maintaining fibers /
- Raman effect /
- parametric amplification
[1] Qiu M 2001 Micro. Opt. Technol. Lett. 30 327
[2] Liu X Y, Zhang F D, Zhang M 2007 Chin. Phys. B 16 1710
[3] Kim S, Kang J U 2004 IEEE Photonies Technol. Lett. 16 494
[4] Ning T G, Qin X, Pei L, Tan Z W, Tong Z, Jian S S 2006 Chin. J. Laser 133 1078 (in Chinese) [宁提纲, 秦曦, 裴丽, 谭中伟, 童治, 简水生 2006 中国激光 133 1078]
[5] Han K J, Lee Y W, Kwon J, Roh S, Jung J, Lee B 2004 IEEE Photonics Technol. Lett. 16 2114
[6] Silva N A, Muga N J, Pinto A N 2009 J. Lightwave Technol. 27 4979
[7] Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086
[8] Katsuragawa M, Hakuta K 2000 Opt. Lett. 25 177
[9] Bi C Z, Wu Y J 2007 Infrared Laser Eng. 36 (supplement) 566 (in Chinese) [毕聪志, 吴衍记 2007 红外与激光工程 36 (增刊) 566]
[10] Gong Z B, Zhang S M 1992 J. Appl. Opt. 13 40 (in Chinese) [龚智炳, 张栓民 1992 应用光学 13 40]
[11] Jia W G, Qiao L R, Wang X Y, Yang J, Zhang J P, Meng K N M L 2012 Acta Phys. Sin. 61 4215 (in Chinese) [贾维国, 乔丽荣, 王旭颖, 杨军, 张俊萍, 门克内木乐 2012 61 4215]
[12] Jia W G, Qiao L R, Wang X Y, Meng K N M L, Yang J, Zhang J P 2012 Acta Phys. Sin. 61 4209 (in Chinese) [贾维国, 乔丽荣, 王旭颖, 门克内木乐, 杨军, 张俊萍 2012 61 4209]
[13] Jia W G, Shi P M, Yang X Y, Zhang J P, Fan G L 2006 Acta Phys. Sin. 55 4575 (in Chinese) [贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁 2006 55 4575]
-
[1] Qiu M 2001 Micro. Opt. Technol. Lett. 30 327
[2] Liu X Y, Zhang F D, Zhang M 2007 Chin. Phys. B 16 1710
[3] Kim S, Kang J U 2004 IEEE Photonies Technol. Lett. 16 494
[4] Ning T G, Qin X, Pei L, Tan Z W, Tong Z, Jian S S 2006 Chin. J. Laser 133 1078 (in Chinese) [宁提纲, 秦曦, 裴丽, 谭中伟, 童治, 简水生 2006 中国激光 133 1078]
[5] Han K J, Lee Y W, Kwon J, Roh S, Jung J, Lee B 2004 IEEE Photonics Technol. Lett. 16 2114
[6] Silva N A, Muga N J, Pinto A N 2009 J. Lightwave Technol. 27 4979
[7] Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086
[8] Katsuragawa M, Hakuta K 2000 Opt. Lett. 25 177
[9] Bi C Z, Wu Y J 2007 Infrared Laser Eng. 36 (supplement) 566 (in Chinese) [毕聪志, 吴衍记 2007 红外与激光工程 36 (增刊) 566]
[10] Gong Z B, Zhang S M 1992 J. Appl. Opt. 13 40 (in Chinese) [龚智炳, 张栓民 1992 应用光学 13 40]
[11] Jia W G, Qiao L R, Wang X Y, Yang J, Zhang J P, Meng K N M L 2012 Acta Phys. Sin. 61 4215 (in Chinese) [贾维国, 乔丽荣, 王旭颖, 杨军, 张俊萍, 门克内木乐 2012 61 4215]
[12] Jia W G, Qiao L R, Wang X Y, Meng K N M L, Yang J, Zhang J P 2012 Acta Phys. Sin. 61 4209 (in Chinese) [贾维国, 乔丽荣, 王旭颖, 门克内木乐, 杨军, 张俊萍 2012 61 4209]
[13] Jia W G, Shi P M, Yang X Y, Zhang J P, Fan G L 2006 Acta Phys. Sin. 55 4575 (in Chinese) [贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁 2006 55 4575]
计量
- 文章访问数: 6727
- PDF下载量: 600
- 被引次数: 0