-
Quantum information technology is mainly based on quantum entanglement. As an important coherent superposition state, the coherence of quantum entanglement source is easily affected by environment and becomes fragile, which will lead to the failure of the quantum information processing. Thus, it is critical to reveal the evolutions of quantum entanglement source under different noisy environments and different noisy channels. Firstly, we experimentally prepare a high-fidelity two-bit entangled state by several technical methods. The fidelity observed for the state prepared in our experiment is 0.993 and the signal-to-noise ratio can reach up to 299. Then, we simulate the bit-flip noise and phase-shift noise (collective and non-collective) using the all-optical experimental setup. Finally, based on the entanglement qubit state, we experimentally study the evolutions of entanglement characteristic under different noisy environments and the single, double and mixed noisy channels. The experimental results show that for the same type of noise, the entanglement properties disappear fast when entangled qubit passes through dual channel noisy environment. The upper bounds of noise intensity to destroy the entanglement property are 0.25 and 0.26 for the single bit-flip noise and phase-shift noisy channels, respectively. The comparison between the two different kinds of noisy environments shows that the entanglement properties disappear fast when entangled bit passes through non-collective environment. The upper bounds of noise intensity are 0.08 and 0.14 for non-collective bit-flip and phase-shift noise to destroy the entanglement property, while the noise intensities are 0.14 and 0.23 for collective bit-flip and phase-shift noise, respectively. For different kinds of noises, the results show that bit-flip noise is more likely to destroy the entanglement properties than the phase-shift. Our results have great significance for the theoretical and experimental studies of entanglement decoherence and have important application value for quantum information processing technology based on the nonlinear optical system.
-
Keywords:
- bit-flip nosie /
- phase-shift noise /
- quantum channel /
- decoherence
[1] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777
[2] Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330
[3] Varnava M, Browne D E, Rudolph T 2008 Phys. Rev. Lett. 100 060502
[4] Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210 (in Chinese) [陈理想, 张远颖 2015 64 164210]
[5] Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 64 160306]
[6] Pakhshan E, Pouria P 2014 Quantum Inf. Process. 13 1789
[7] Dr W, Briegel H J 2004 Phys. Rev. Lett. 92 180403
[8] Aolita L, Chaves R, Cavalcanti D, Acn A, Davidovich L 2008 Phys. Rev. Lett. 100 080501
[9] Zhang Y C, Bao W S, Wang X, Fu X Q 2015 Chin. Rhys. B 24 080307
[10] Yang G H, Zhang B B, Li L 2015 Chin. Rhys. B 24 060302
[11] Knoll L, Orlowski A 1995 Phys. Rev. A 51 1622
[12] Vedral V, Plemin M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275
[13] Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392
[14] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[15] Kwiat R G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498
[16] Lo F R, Bellpmo B, Maniscalco S, Compagno G 2013 Int. J. Mod. Phys. B 27 1345053
[17] Xu J S, Li C F, Gong M, Zou X B, Chen L, Chen G, Tang J S, Guo G C 2009 New J. Phys. 11 043010
[18] Almeida M P, deMelo F, Meyll M H, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579
[19] Lu H, Chen L K, Liu C, Xu P, Yao X C, Li L, Liu N L, Zhao B, Chen Y A, Pan J W 2014 Nat. Photon. 8 364
[20] Lu H X, Cao L Z, Zhao J Q, Li Y D, Wang X Q 2014 Sci. Rep. 4 4476
[21] Cao L Z, Zhao J Q, Wang X Q, Lu H X 2013 Sci. China: Phys. Mech. Astron 43 1079 (in Chinese) [曹连振, 赵加强, 王晓芹, 逯怀新 2013 中国科学: 物理学 力学 天文学, 43 1079]
[22] Zhao J Q, Cao L Z, Wang X Q, Lu H X 2012 Phys. Lett. A 376 2377
[23] Zhao J Q, Cao L Z, Lu H X, Wang X Q 2013 Acta Phys. Sin. 62 120301 (in Chinese) [赵加强, 曹连振, 逯怀新, 王晓芹 2013 62 120301]
[24] Lu H X, Zhao J Q, Cao L Z, Wang X Q 2011 Phys. Rev. A 84 44101
[25] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516
[26] Chiaverini J 2004 Nature 432 602
[27] Prevedel R, Tame M, Stefanov A, Paternostro M, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 99 250503
[28] Reichle R 2006 Nature 443 838
[29] Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209
[30] Xiao X, Li Y L 2013 Eur. Phys. J. D 67 204
-
[1] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777
[2] Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330
[3] Varnava M, Browne D E, Rudolph T 2008 Phys. Rev. Lett. 100 060502
[4] Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210 (in Chinese) [陈理想, 张远颖 2015 64 164210]
[5] Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 64 160306]
[6] Pakhshan E, Pouria P 2014 Quantum Inf. Process. 13 1789
[7] Dr W, Briegel H J 2004 Phys. Rev. Lett. 92 180403
[8] Aolita L, Chaves R, Cavalcanti D, Acn A, Davidovich L 2008 Phys. Rev. Lett. 100 080501
[9] Zhang Y C, Bao W S, Wang X, Fu X Q 2015 Chin. Rhys. B 24 080307
[10] Yang G H, Zhang B B, Li L 2015 Chin. Rhys. B 24 060302
[11] Knoll L, Orlowski A 1995 Phys. Rev. A 51 1622
[12] Vedral V, Plemin M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275
[13] Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392
[14] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[15] Kwiat R G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498
[16] Lo F R, Bellpmo B, Maniscalco S, Compagno G 2013 Int. J. Mod. Phys. B 27 1345053
[17] Xu J S, Li C F, Gong M, Zou X B, Chen L, Chen G, Tang J S, Guo G C 2009 New J. Phys. 11 043010
[18] Almeida M P, deMelo F, Meyll M H, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579
[19] Lu H, Chen L K, Liu C, Xu P, Yao X C, Li L, Liu N L, Zhao B, Chen Y A, Pan J W 2014 Nat. Photon. 8 364
[20] Lu H X, Cao L Z, Zhao J Q, Li Y D, Wang X Q 2014 Sci. Rep. 4 4476
[21] Cao L Z, Zhao J Q, Wang X Q, Lu H X 2013 Sci. China: Phys. Mech. Astron 43 1079 (in Chinese) [曹连振, 赵加强, 王晓芹, 逯怀新 2013 中国科学: 物理学 力学 天文学, 43 1079]
[22] Zhao J Q, Cao L Z, Wang X Q, Lu H X 2012 Phys. Lett. A 376 2377
[23] Zhao J Q, Cao L Z, Lu H X, Wang X Q 2013 Acta Phys. Sin. 62 120301 (in Chinese) [赵加强, 曹连振, 逯怀新, 王晓芹 2013 62 120301]
[24] Lu H X, Zhao J Q, Cao L Z, Wang X Q 2011 Phys. Rev. A 84 44101
[25] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516
[26] Chiaverini J 2004 Nature 432 602
[27] Prevedel R, Tame M, Stefanov A, Paternostro M, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 99 250503
[28] Reichle R 2006 Nature 443 838
[29] Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209
[30] Xiao X, Li Y L 2013 Eur. Phys. J. D 67 204
Catalog
Metrics
- Abstract views: 5715
- PDF Downloads: 220
- Cited By: 0