-
Neutron holography is a new imaging technique based on the recording of the interference pattern of two coherent waves emitted by the same source, which allows observing the spatial order of microscopic objects like molecules or atoms in crystal sample. Two approaches can be used in neutron holography measurements. One is called inside-source holography, in which both the reference wave and object wave come from embedded atoms in the sample and propagate toward the detector outside the sample. The second approach called inside-detector holography is the inverse method of inside-source holography, in this case the reference wave is the initial neutron beam coming from a distant source outside the sample, while the atoms embedded in the sample act as detectors. In an ideal inside-source holography experiment, the sample should be fixed and the detector moves on a sphere, which is not practical because the detector system is usually heavy and far from the sample. In order to minimize the operation space, the detector always moves on a circle around sample or is located at a fixed position, while the sample rotates in an appropriate way to imitate the motion of the detector in a sphere. However, the orientation of the sample relative to the incident neutron beam is changed during sample rotation, and part of the inverse hologram is recorded together with the inside-detector hologram, which can cause distortion in the holographic reconstruction. In this paper, we simulate neutron holograms and reconstructions based on three different sample/detector rotations. In the first case, the detector moves on a circle, while the sample rotates about an axis perpendicular to the detector moving surface. In the second case, the detector is fixed, while the sample rotates around two perpendicular axes, the θ axis rotating the sample through πradians is perpendicular to the incident beam-detector plane, while the θ axis rotating the sample through 2πradians moves on a circle parallel to the incident beam-detector plane, this rotation can be carried out on a 3-axis spectrometry. In the third case, the detector is also fixed and the sample rotates around two perpendicular axes, but the θ axis is parallel to the sample-detector direction, while the θ axis moves on a circle perpendicular to the incident beam-detector plane, this rotation can be carried out on a 4-cycle spectrometry. The distortions and corresponding correcting methods of three kinds of rotations are discussed. The result shows that most distortions can be corrected by using special measurement or reconstruction techniques. Furthermore, pure sample rotation based on 3-axis spectrometer can achieve the best reconstruction result, so this rotation approach is preferred if conditions permit.
-
Keywords:
- neutron holography /
- sample rotation /
- 3-axis spectrometry /
- 4-cycle spectrometry
[1] Arif M 2008 Neutron Radiography: Proceedings of the Eighth World Conference (Lancaster: Destech Publications)
[2] Cao C, Wang S, Tang K, Yin W, Wu Y 2014 Acta Phys. Sin. 63 182801 (in Chinese) [曹超, 王胜, 唐科, 尹伟, 吴洋 2014 63 182801]
[3] Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 122801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 62 122801]
[4] Cser L, Krexner G, Török G 2001 Europhys. Lett. 54 747
[5] Sur B, Rogge R B, Hammond R P, Anghel N P, Katsaras J 2001 Nature 414 525
[6] Cser L, Török Gy, Krexner G, Faragó B 2002 Phys. Rev. Lett. 89 175504
[7] Cser L, Török Gy, Krexner G, Prem M, Sharkov I 2004 Appl. Phys. Lett. 85 1149
[8] Hayashi K, Ohoyama K, Orimo S, Nakamori Y, Takahashi H, Shibata K 2008 Jpn. J. Appl. Phys. 47 2291
[9] Markó M, Krexner G, Schefer J, Szakál A, Cser L 2010 New J. Phys. 12 063036
[10] Cser L, Krexner G, Markó M, Sharkov I, Török Gy 2006 Phys. Rev. Lett. 97 255501
[11] Marko M, Szakal A, Török Gy, Cser L 2010 Rev.Sci. Instrum. 81 105110
[12] Tegze M, Faigel G, Marchesini S, Belakovsky M, Chumakov A I 1999 Phys. Rev. Lett. 82 4847
[13] Tegze M, Faigel G 1996 Nature 380 49
[14] Xie H L, Gao H Y, Chen J W, Wang Y, Zhu P P, Xiong S S, Xian D C, Xu Z Z 2003 Acta Phys. Sin. 52 2223 (in Chinese) [谢红兰, 高鸿奕, 陈建文, 王越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展 2003 52 2223]
[15] Cao C, Sun Y, Tang B, Huo H Y 2013 Nucl. Tech. 36 010202 (in Chinese) [曹超, 孙勇, 唐彬, 霍合勇 2013 核技术 36 010202]
[16] Cao C, Tang B, Sun Y, Li H, Liu B, Huo H Y 2015 Atomic Energy Sci. Technol. 49 1109 (in Chinese) [曹超, 唐彬, 孙勇, 李航, 刘斌, 霍合勇 2015 原子能科学技术 49 1109]
[17] Li S L, Dai P C 2011 Physics 40 33 (in Chinese) [李世亮, 戴鹏程 2011 物理 40 33]
[18] Li M J, Liu X L, Liu Y T, Tian G F, Wu L Q, Sun K, Chen D F 2014 Atomic Energy Sci. Technol. 48 532 (in Chinese) [李眉娟, 刘晓龙, 刘蕴韬, 田庚方, 吴立齐, 孙凯, 陈东风 2014 原子能科学技术 48 532]
[19] Cser L, Faragó B, Krexner G, Sharkov I, Török Gy 2004 Physica B 350 113
-
[1] Arif M 2008 Neutron Radiography: Proceedings of the Eighth World Conference (Lancaster: Destech Publications)
[2] Cao C, Wang S, Tang K, Yin W, Wu Y 2014 Acta Phys. Sin. 63 182801 (in Chinese) [曹超, 王胜, 唐科, 尹伟, 吴洋 2014 63 182801]
[3] Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 122801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 62 122801]
[4] Cser L, Krexner G, Török G 2001 Europhys. Lett. 54 747
[5] Sur B, Rogge R B, Hammond R P, Anghel N P, Katsaras J 2001 Nature 414 525
[6] Cser L, Török Gy, Krexner G, Faragó B 2002 Phys. Rev. Lett. 89 175504
[7] Cser L, Török Gy, Krexner G, Prem M, Sharkov I 2004 Appl. Phys. Lett. 85 1149
[8] Hayashi K, Ohoyama K, Orimo S, Nakamori Y, Takahashi H, Shibata K 2008 Jpn. J. Appl. Phys. 47 2291
[9] Markó M, Krexner G, Schefer J, Szakál A, Cser L 2010 New J. Phys. 12 063036
[10] Cser L, Krexner G, Markó M, Sharkov I, Török Gy 2006 Phys. Rev. Lett. 97 255501
[11] Marko M, Szakal A, Török Gy, Cser L 2010 Rev.Sci. Instrum. 81 105110
[12] Tegze M, Faigel G, Marchesini S, Belakovsky M, Chumakov A I 1999 Phys. Rev. Lett. 82 4847
[13] Tegze M, Faigel G 1996 Nature 380 49
[14] Xie H L, Gao H Y, Chen J W, Wang Y, Zhu P P, Xiong S S, Xian D C, Xu Z Z 2003 Acta Phys. Sin. 52 2223 (in Chinese) [谢红兰, 高鸿奕, 陈建文, 王越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展 2003 52 2223]
[15] Cao C, Sun Y, Tang B, Huo H Y 2013 Nucl. Tech. 36 010202 (in Chinese) [曹超, 孙勇, 唐彬, 霍合勇 2013 核技术 36 010202]
[16] Cao C, Tang B, Sun Y, Li H, Liu B, Huo H Y 2015 Atomic Energy Sci. Technol. 49 1109 (in Chinese) [曹超, 唐彬, 孙勇, 李航, 刘斌, 霍合勇 2015 原子能科学技术 49 1109]
[17] Li S L, Dai P C 2011 Physics 40 33 (in Chinese) [李世亮, 戴鹏程 2011 物理 40 33]
[18] Li M J, Liu X L, Liu Y T, Tian G F, Wu L Q, Sun K, Chen D F 2014 Atomic Energy Sci. Technol. 48 532 (in Chinese) [李眉娟, 刘晓龙, 刘蕴韬, 田庚方, 吴立齐, 孙凯, 陈东风 2014 原子能科学技术 48 532]
[19] Cser L, Faragó B, Krexner G, Sharkov I, Török Gy 2004 Physica B 350 113
Catalog
Metrics
- Abstract views: 5374
- PDF Downloads: 141
- Cited By: 0