-
非弹性中子散射谱是材料科学和物理学研究中的关键工具, 其通过观测中子与物质相互作用后的能量和动量变化, 揭示材料的微观动力学特性. 该技术为定量描述材料的声子色散和磁性激发提供了重要信息. 非弹性中子散射谱仪根据单色中子的选择方法, 可分为三轴谱仪和飞行时间谱仪. 三轴谱仪具有高信噪比、高灵活性, 并且对特定测量点能进行精确追踪; 而飞行时间谱仪则通过多种手段显著提升实验效率. 非弹性中子散射谱仪的应用范围相当广泛, 在磁性、超导、热电、催化等诸多材料的机理研究方面, 均体现出在推动前沿科学发展中的不可或缺性. 中国散裂中子源的高能非弹性谱仪是国内首台飞行时间中子非弹性谱仪, 凭借其创新的费米斩波器设计, 成功实现了高分辨率与多能量的共存, 同时实验可用的单束中子支数达到了国际领先水平.
-
关键词:
- 非弹性中子散射 /
- 三轴中子散射谱仪 /
- 飞行时间中子散射谱仪 /
- 费米斩波器
Inelastic neutron scattering is a pivotal technique in materials science and physics research, revealing the microscopic dynamic properties of materials by observing the changes in energy and momentum of neutrons interacting with matter. This technique provides important information for quantitatively describing the phonon dispersion and magnetic excitation of materials. Inelastic neutron scattering spectrometers can be divided into triple-axis spectrometers and time-of-flight spectrometers, according to the method of selecting monochromatic neutrons. The former has high signal-to-noise ratio, flexibility, and precise tracking capabilities for specific measurement points, while the latter significantly improves experimental efficiency through various measures. The application of inelastic neutron scattering spectrometers is quite extensive, playing an indispensable role in advancing frontier scientific research in the study of mechanisms in various materials such as magnetism, superconductivity, thermoelectrics, and catalysis. The high-energy inelastic spectrometer at the China Spallation Neutron Source is the first time-of-flight neutron inelastic spectrometer in China, achieving high resolution and multi-energy coexistence with its innovative Fermi chopper design. Additionally, the number of available single neutron beams in the experiment of this facility has reached the international leading level.-
Keywords:
- inelastic neutron scattering /
- triple-axis neutron scattering spectrometer /
- time-of-flight neutron scattering spectrometer /
- Fermi chopper
[1] Rutherford E 1920 Proc. R. Soc. London, Ser. A 97 374
Google Scholar
[2] Chadwick J 1932 Nature 129 312
Google Scholar
[3] Von Halban H 1936 Acad. Sci. Paris 203 73
[4] Elsasser W 1936 CR Acad. Sci 202 1029
[5] Mitchell D P, Powers P N 1936 Phys. Rev. 50 486
Google Scholar
[6] Bloch F 1936 Phys. Rev. 50 259
Google Scholar
[7] Alvarez L W, Bloch F 1940 Phys. Rev. 57 111
Google Scholar
[8] Shull C G, Smart J S 1949 Phys. Rev. 76 1256
Google Scholar
[9] Brockhouse B, Hurst D 1952 Phys. Rev. 88 542
Google Scholar
[10] Brockhouse B 1958 Il Nuovo Cimento (1955-1965) 9 45
Google Scholar
[11] Besnard M, Dianoux A J, Lalanne P, Lassegues J C 1977 J. Phys. 38 1417
Google Scholar
[12] Janik J A 1982 Adv. Liq. Cryst. 5 215
Google Scholar
[13] Gaskell P H, Saeed A, Chieux P, Mckenzie D R 1991 Phys. Rev. Lett. 67 1286
Google Scholar
[14] Loong C K, Vashishta P, Kalia R K, Degani M H, Zheng Y 1989 Phys. Rev. Lett. 62 2628
Google Scholar
[15] Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, Nagler S E 2017 Science 356 1055
Google Scholar
[16] Squires G L, Lynn J W 1978 Phys. Today 32 69
Google Scholar
[17] Brockhouse B, Stewart A 1955 Phys. Rev. 100 756
Google Scholar
[18] Rodriguez J A, Adler D M, Brand P C, Broholm C, Cook J C, Brocker C, Hammond R, Huang Z, Hundertmark P, Lynn J W, Maliszewskyj N C, Moyer J, Orndorff J, Pierce D, Pike T D, Scharfstein G, Smee S A, Vilaseca R 2008 Meas. Sci. Technol. 19 034023
Google Scholar
[19] Lynn J, Chen Y, Chang S, Zhao Y, Chi S, Ratcliff II W, Ueland B G, Erwin R W 2012 J. Res. Nat. Inst. Stand. Technol. 117 61
Google Scholar
[20] Boehm M, Hiess A, Kulda J, Roux S, Saroun J 2008 Meas. Sci. Technol. 19 034024
Google Scholar
[21] Jimenez-Ruiz M, Hiess A, Currat R, Kulda J, Bermejo F 2006 Physica B 385 1086
Google Scholar
[22] Wu C M, Deng G, Gardner J, Vorderwisch P, Li W H, Yano S, Peng J C, Imamovic E 2016 J. Instrum. 11 P10009
Google Scholar
[23] Danilkin S A, Yethiraj M, Saerbeck T, Klose F, Ulrich C, Fujioka J, Miyasaka S, Tokura Y, Keimer B 2012 J. Phys. Conf. Ser. 340 012003
Google Scholar
[24] Kikuchi H, Asai S, Sato T J, Nakajima T, Harriger L, Zaliznyak I, Masuda T 2024 J. Phys. Soc. Japan 93 091004
Google Scholar
[25] Nawa K, Okuyama D, Wu H C, Murasaki R, Matsuzaka S, Kinjo K, Sato T J 2024 J. Phys. Soc. Japan 93 091001
Google Scholar
[26] Fischer W 1997 Physica B 234 1202
Google Scholar
[27] Stuhr U, Roessli B, Gvasaliya S, Rnnow H, Filges U, Graf D, Bollhalder A, Hohl D, Bürge R, Schild M, Holitzner L, C K, Keller P, Mühlebach T 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 853 16
Google Scholar
[28] Cheng P, Zhang H, Bao W, Schneidewind A, Link P, Grünwald A, Georgii R, Hao L, Liu Y 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 821 17
Google Scholar
[29] 李天富, 武梅梅, 焦学胜, 孙凯, 陈东风 2020 原子核物理评论 37 364
Google Scholar
Li T F, Wu M M, Jiao X S, Sun K, Chen D F 2020 Nucl. Phys. Rev. 37 364
Google Scholar
[30] Song J M, Luo W, Liu B Q, et al. 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 968 163929
Google Scholar
[31] 戴鹏程, 李世亮 2011 物理 40 33
Dai P C, Li S L 2011 Physics 40 33
[32] Demmel F, Fleischmann A, Gläser W 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 416 115
Google Scholar
[33] Kempa M, Janousova B, Saroun J, Flores P, Boehm M, Demmel F, Kulda J 2006 Physica B 385-386 1080
Google Scholar
[34] Groitl F, Toft-Petersen R, Quintero-Castro D L, et al. 2017 Sci. Rep. 7 13637
Google Scholar
[35] Utschick C, Skoulatos M, Schneidewind A, Böni P 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 837 88
Google Scholar
[36] Sobolev O, Hoffmann R, Gibhardt H, Jünke N, Knorr A, Meyer V, Eckold G 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 772 63
Google Scholar
[37] Wang J, Liu J, Xu D, Grünauer F, Hao L, Liu Y, Zhang H, Cheng P, Bao W 2024 Chin. Phys. B 33 057801
Google Scholar
[38] Firk F 1979 Nucl. Instrum. Methods 162 539
Google Scholar
[39] Yu D, Mole R, Noakes T, Kennedy S, Robinson R 2013 J. Phys. Soc. Japan 82 SA027
Google Scholar
[40] Cicognani G, Mutka H, Sacchetti F 2000 Physica B 276 83
Google Scholar
[41] Ollivier J, Mutka H, Didier L 2010 Neutron News 21 22
Google Scholar
[42] Kajimoto R, Yokoo T, Nakajima K, et al. 2007 J. Neutron Res. 15 5
Google Scholar
[43] Nakajima K, Ohira-Kawamura S, Kikuchi T, Nakamura M, Kajimoto R, Inamura Y, Takahashi N, Aizawa K, Suzuya K, Shibata K, et al. 2011 J. Phys. Soc. Japan 80 SB028
Google Scholar
[44] Le M D, Guidi T, Bewley R, et al. 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1056 168646
Google Scholar
[45] Bewley R, Eccleston R, McEwen K, Hayden S, Dove M, Bennington S, Treadgold J, Coleman R 2006 Physica B 385-386 1029
Google Scholar
[46] Bewley R, Taylor J, Bennington S 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 637 128
Google Scholar
[47] Abernathy D L, Stone M B, Loguillo M, Lucas M, Delaire O, Tang X, Lin J, Fultz B 2012 Rev. Sci. Instrum 83 015114
Google Scholar
[48] Ehlers G, Podlesnyak A A, Niedziela J L, Iverson E B, Sokol P E 2011 Rev. Sci. Instrum. 82 085108
Google Scholar
[49] Luo W, Feng Y, Liu X, et al. 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1046 167676
Google Scholar
[50] Lanigan-Atkins T, Yang S, Niedziela J L, Bansal D, Delaire O 2020 Nat. Commun. 11 4430
Google Scholar
[51] Sidis Y, Pailhès S, Hinkov V, Fauquxe B, Ulrich C, Capogna L, Ivanov A, Regnault L P, Keimer B, Bourges P 2007 C. R. Phys. 8 745
Google Scholar
[52] Fujita M, Hiraka H, Matsuda M, Matsuura M, M Tranquada J, Wakimoto S, Xu G, Yamada K 2012 J. Phys. Soc. Japan 81 011007
Google Scholar
[53] Dai P 2015 Rev. Mod. Phys. 87 855
Google Scholar
[54] Xie T, Huo M, Ni X, Shen F, Huang X, Sun H, Walker H C, Adroja D, Yu D, Shen B, He L, Cao K, Wang M 2024 Sci. Bull. 69 3221
Google Scholar
[55] Tranquada J, Woo H, Perring T, Goka H, Gu G, Xu G, Fujita M, Yamada K 2004 Nature 429 534
Google Scholar
[56] Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709
Google Scholar
[57] Si Q, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 1
Google Scholar
[58] Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, Eremets M 2021 Nat. Rev. Phys. 3 462
Google Scholar
[59] Wang M, Zhang C, Lu X, et al. 2013 Nat. Commun. 4 2874
Google Scholar
[60] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S, Luo H 2020 Phys. Rev. Lett. 125 117002
Google Scholar
[61] Gu Q, Wen H H 2022 Innovation 3 100202
Google Scholar
[62] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402
Google Scholar
[63] Sun H, Huo M, Hu X, et al. 2023 Nature 621 493
Google Scholar
[64] Wang N, Wang G, Shen X, et al. 2024 Nature 634 579
Google Scholar
[65] Wxu W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. 67 117402
Google Scholar
[66] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003
Google Scholar
[67] Zhu Z, Pan B, Nie L, et al. 2023 Innovation 4 100459
Google Scholar
[68] Lin G, Ma J 2023 Innovation 4 100484
Google Scholar
[69] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668
Google Scholar
[70] 王颖, 殳蕾 2024 73 197601
Google Scholar
Wang Y, Shu L 2024 Acta Phys. Sin. 73 197601
Google Scholar
[71] Paddison J A, Daum M, Dun Z, Ehlers G, Liu Y, Stone M B, Zhou H, Mourigal M 2017 Nat. Phys. 13 117
Google Scholar
[72] Chillal S, Iqbal Y, Jeschke H O, Rodriguez-Rivera J A, Lake B 2020 Nat. Commun. 11 2348
Google Scholar
[73] Bansal D, Niedziela J L, Sinclair R, Garlea V O, Abernathy D L, Chi S, Ren Y, Zhou H, Delaire O 2018 Nat. Commun. 9 15
Google Scholar
[74] Wei B, Sun Q, Li C, Hong J 2021 Sci. China Phys. Mech. 64 117001
Google Scholar
[75] Ren Q, Gupta M K, Jin M, et al. 2023 Nat. Mater. 22 999
Google Scholar
[76] Han S, Dai S, Ma J, et al. 2023 Nat. Phys. 19 1649
Google Scholar
[77] Kofu M, Hashimoto N, Akiba H, Kobayashi H, Kitagawa H, Iida K, Nakamura M, Yamamuro O 2017 Phys. Rev. B 96 054304
Google Scholar
[78] Shrestha U R, Mamontov E, O’Neill H M, Zhang Q, Kolesnikov A I, Chu X 2022 Innovation 3 100199
Google Scholar
[79] Hong L, Jain N, Cheng X, Bernal A, Tyagi M, Smith J C 2016 Sci. Adv. 2 e1600886
Google Scholar
-
图 1 (a)三轴谱仪平面图; (b) CMRR的“鲲鹏”冷三轴谱仪[30]; (c) “翠竹”热中子谱仪的构造图[31]; (d) “翠竹”热中子谱仪的照片[29]
Fig. 1. (a) Triple-axis spectrometer plane diagram; (b) the cold triple-axis spectrometer “Kunpeng” at CMRR[30]; (c) construction diagram of the thermal triple-axis spectrometer IOP-CIAE[31]; (d) photograph of the thermal triple-axis spectrometer IOP-CIAE[29].
图 5 通过费米斩波器的中子飞行时间-距离图. 其中虚线表示相邻两支单色中子的能量分析区间存在重叠. 颜色的透明度代表费米斩波器在该能量的透过率
Fig. 5. The neutron flight time-distance diagram of the Fermi chopper. The dashed lines indicate that there is an overlap in the energy analysis ranges of two adjacent monochromatic neutrons. Transparency of the colors represents the transmission rate of the Fermi chopper at that energy.
图 8 SnS声子色散和动态磁化率$ (\chi''(Q, E)) $随结构相变的演化 (a)—(d) Pnma相; (e)—(h) Cmcm相. 图(a)和图(e)分别为在Pnma相和Cmcm相中用谐波近似计算的低能色散[50]
Fig. 8. The SnS phonon dispersion and dynamic magnetic susceptibility $ (\chi''(Q, E)) $ evolve with structural phase transitions: (a)–(d) The Pnma phase; (e)–(h) the Cmcm phase. The low-energy dispersion calculated using harmonic approximation in the Pnma phase and Cmcm phase are shown[50] in panels (a) and (e).
图 9 (a)通过非弹性中子散射测量$ {\mathrm{La}}_3 {\mathrm{Ni}}_2 {\mathrm{O}}_{7-\delta} $的能谱, 强度为低温减去高温数据; (b)通过自旋波计算得到的自旋激发谱[54]
Fig. 9. (a) Energy spectrum of ${\mathrm{La}}_3{\mathrm{Ni}} _2{\mathrm{O}} _{7-\delta} $ was measured through inelastic neutron scattering, with intensity being the low-temperature data subtracted from the high-temperature data; (b) spin excitation spectrum obtained through spin wave calculations[54].
图 10 (a)通过非弹性中子散射测量的$ {\mathrm{PbCuTe}}_2{\mathrm{O}} _6 $粉末的磁激发; (b)$ {\mathrm{PbCuTe}}_2{\mathrm{ O}}_6 $单晶的磁激发谱[72]
Fig. 10. (a) Magnetic excitations of ${\mathrm{PbCuTe}} _2{\mathrm{O}} _6 $ powder measured by inelastic neutron scattering; (b) magnetic excitation spectrum of $ {\mathrm{PbCuTe}}_2{\mathrm{O}} _6 $ single crystal[72].
表 1 各个非弹谱仪的参数对比. 其中L1, L2和L3分别为慢化器到费米斩波器的距离、样品到费米斩波器的距离和样品到探测器的距离
Table 1. Parameter comparison of various non-elastic spectrometers. Among them, L1, L2 and L3 are the distance from the moderator to the Fermi chopper, the distance from the sample to the Fermi chopper and the distance from the sample to the detector respectively.
谱仪 HRC 4SEASONS SEQUOIA ARCS MERLIN HD 中子源 J-PARC J-PARC SNS SNS ISIS CSNS 慢化器 DHM CHM DWM DWM DWM DWM Ei/meV 1—2000 5—300 8—2000 10—1500 7—2000 10—1500 Q/Å–1 — — — 0.15—22 — 0.1—41.5 水平角度 –31°—62° –35°—130° –30°—60° –28°—135° –45°—135° –30—130°
前期(–30°—60°)垂直角度 20°—20° –25°—27° –18°—18° –27°—26° –30°—30° –30—30° 分辨率 >2% >5% 1%—5% 3%—5% 4%—7% 3%—10% L1/L2/L3 14/1/4 16.3/1.7/2.5 18/2/5.53 11.6/2/3—3.4 10/1.8/2.5 16/2/2.5 样品尺寸 5 cm×5 cm 4.5 cm×4.5 cm
or 2 cm×2 cm5 cm×5 cm 5 cm×5 cm 5 cm×5 cm 5 cm×5 cm
or 3 cm×3 cm -
[1] Rutherford E 1920 Proc. R. Soc. London, Ser. A 97 374
Google Scholar
[2] Chadwick J 1932 Nature 129 312
Google Scholar
[3] Von Halban H 1936 Acad. Sci. Paris 203 73
[4] Elsasser W 1936 CR Acad. Sci 202 1029
[5] Mitchell D P, Powers P N 1936 Phys. Rev. 50 486
Google Scholar
[6] Bloch F 1936 Phys. Rev. 50 259
Google Scholar
[7] Alvarez L W, Bloch F 1940 Phys. Rev. 57 111
Google Scholar
[8] Shull C G, Smart J S 1949 Phys. Rev. 76 1256
Google Scholar
[9] Brockhouse B, Hurst D 1952 Phys. Rev. 88 542
Google Scholar
[10] Brockhouse B 1958 Il Nuovo Cimento (1955-1965) 9 45
Google Scholar
[11] Besnard M, Dianoux A J, Lalanne P, Lassegues J C 1977 J. Phys. 38 1417
Google Scholar
[12] Janik J A 1982 Adv. Liq. Cryst. 5 215
Google Scholar
[13] Gaskell P H, Saeed A, Chieux P, Mckenzie D R 1991 Phys. Rev. Lett. 67 1286
Google Scholar
[14] Loong C K, Vashishta P, Kalia R K, Degani M H, Zheng Y 1989 Phys. Rev. Lett. 62 2628
Google Scholar
[15] Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, Nagler S E 2017 Science 356 1055
Google Scholar
[16] Squires G L, Lynn J W 1978 Phys. Today 32 69
Google Scholar
[17] Brockhouse B, Stewart A 1955 Phys. Rev. 100 756
Google Scholar
[18] Rodriguez J A, Adler D M, Brand P C, Broholm C, Cook J C, Brocker C, Hammond R, Huang Z, Hundertmark P, Lynn J W, Maliszewskyj N C, Moyer J, Orndorff J, Pierce D, Pike T D, Scharfstein G, Smee S A, Vilaseca R 2008 Meas. Sci. Technol. 19 034023
Google Scholar
[19] Lynn J, Chen Y, Chang S, Zhao Y, Chi S, Ratcliff II W, Ueland B G, Erwin R W 2012 J. Res. Nat. Inst. Stand. Technol. 117 61
Google Scholar
[20] Boehm M, Hiess A, Kulda J, Roux S, Saroun J 2008 Meas. Sci. Technol. 19 034024
Google Scholar
[21] Jimenez-Ruiz M, Hiess A, Currat R, Kulda J, Bermejo F 2006 Physica B 385 1086
Google Scholar
[22] Wu C M, Deng G, Gardner J, Vorderwisch P, Li W H, Yano S, Peng J C, Imamovic E 2016 J. Instrum. 11 P10009
Google Scholar
[23] Danilkin S A, Yethiraj M, Saerbeck T, Klose F, Ulrich C, Fujioka J, Miyasaka S, Tokura Y, Keimer B 2012 J. Phys. Conf. Ser. 340 012003
Google Scholar
[24] Kikuchi H, Asai S, Sato T J, Nakajima T, Harriger L, Zaliznyak I, Masuda T 2024 J. Phys. Soc. Japan 93 091004
Google Scholar
[25] Nawa K, Okuyama D, Wu H C, Murasaki R, Matsuzaka S, Kinjo K, Sato T J 2024 J. Phys. Soc. Japan 93 091001
Google Scholar
[26] Fischer W 1997 Physica B 234 1202
Google Scholar
[27] Stuhr U, Roessli B, Gvasaliya S, Rnnow H, Filges U, Graf D, Bollhalder A, Hohl D, Bürge R, Schild M, Holitzner L, C K, Keller P, Mühlebach T 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 853 16
Google Scholar
[28] Cheng P, Zhang H, Bao W, Schneidewind A, Link P, Grünwald A, Georgii R, Hao L, Liu Y 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 821 17
Google Scholar
[29] 李天富, 武梅梅, 焦学胜, 孙凯, 陈东风 2020 原子核物理评论 37 364
Google Scholar
Li T F, Wu M M, Jiao X S, Sun K, Chen D F 2020 Nucl. Phys. Rev. 37 364
Google Scholar
[30] Song J M, Luo W, Liu B Q, et al. 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 968 163929
Google Scholar
[31] 戴鹏程, 李世亮 2011 物理 40 33
Dai P C, Li S L 2011 Physics 40 33
[32] Demmel F, Fleischmann A, Gläser W 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 416 115
Google Scholar
[33] Kempa M, Janousova B, Saroun J, Flores P, Boehm M, Demmel F, Kulda J 2006 Physica B 385-386 1080
Google Scholar
[34] Groitl F, Toft-Petersen R, Quintero-Castro D L, et al. 2017 Sci. Rep. 7 13637
Google Scholar
[35] Utschick C, Skoulatos M, Schneidewind A, Böni P 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 837 88
Google Scholar
[36] Sobolev O, Hoffmann R, Gibhardt H, Jünke N, Knorr A, Meyer V, Eckold G 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 772 63
Google Scholar
[37] Wang J, Liu J, Xu D, Grünauer F, Hao L, Liu Y, Zhang H, Cheng P, Bao W 2024 Chin. Phys. B 33 057801
Google Scholar
[38] Firk F 1979 Nucl. Instrum. Methods 162 539
Google Scholar
[39] Yu D, Mole R, Noakes T, Kennedy S, Robinson R 2013 J. Phys. Soc. Japan 82 SA027
Google Scholar
[40] Cicognani G, Mutka H, Sacchetti F 2000 Physica B 276 83
Google Scholar
[41] Ollivier J, Mutka H, Didier L 2010 Neutron News 21 22
Google Scholar
[42] Kajimoto R, Yokoo T, Nakajima K, et al. 2007 J. Neutron Res. 15 5
Google Scholar
[43] Nakajima K, Ohira-Kawamura S, Kikuchi T, Nakamura M, Kajimoto R, Inamura Y, Takahashi N, Aizawa K, Suzuya K, Shibata K, et al. 2011 J. Phys. Soc. Japan 80 SB028
Google Scholar
[44] Le M D, Guidi T, Bewley R, et al. 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1056 168646
Google Scholar
[45] Bewley R, Eccleston R, McEwen K, Hayden S, Dove M, Bennington S, Treadgold J, Coleman R 2006 Physica B 385-386 1029
Google Scholar
[46] Bewley R, Taylor J, Bennington S 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 637 128
Google Scholar
[47] Abernathy D L, Stone M B, Loguillo M, Lucas M, Delaire O, Tang X, Lin J, Fultz B 2012 Rev. Sci. Instrum 83 015114
Google Scholar
[48] Ehlers G, Podlesnyak A A, Niedziela J L, Iverson E B, Sokol P E 2011 Rev. Sci. Instrum. 82 085108
Google Scholar
[49] Luo W, Feng Y, Liu X, et al. 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1046 167676
Google Scholar
[50] Lanigan-Atkins T, Yang S, Niedziela J L, Bansal D, Delaire O 2020 Nat. Commun. 11 4430
Google Scholar
[51] Sidis Y, Pailhès S, Hinkov V, Fauquxe B, Ulrich C, Capogna L, Ivanov A, Regnault L P, Keimer B, Bourges P 2007 C. R. Phys. 8 745
Google Scholar
[52] Fujita M, Hiraka H, Matsuda M, Matsuura M, M Tranquada J, Wakimoto S, Xu G, Yamada K 2012 J. Phys. Soc. Japan 81 011007
Google Scholar
[53] Dai P 2015 Rev. Mod. Phys. 87 855
Google Scholar
[54] Xie T, Huo M, Ni X, Shen F, Huang X, Sun H, Walker H C, Adroja D, Yu D, Shen B, He L, Cao K, Wang M 2024 Sci. Bull. 69 3221
Google Scholar
[55] Tranquada J, Woo H, Perring T, Goka H, Gu G, Xu G, Fujita M, Yamada K 2004 Nature 429 534
Google Scholar
[56] Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709
Google Scholar
[57] Si Q, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 1
Google Scholar
[58] Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, Eremets M 2021 Nat. Rev. Phys. 3 462
Google Scholar
[59] Wang M, Zhang C, Lu X, et al. 2013 Nat. Commun. 4 2874
Google Scholar
[60] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S, Luo H 2020 Phys. Rev. Lett. 125 117002
Google Scholar
[61] Gu Q, Wen H H 2022 Innovation 3 100202
Google Scholar
[62] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402
Google Scholar
[63] Sun H, Huo M, Hu X, et al. 2023 Nature 621 493
Google Scholar
[64] Wang N, Wang G, Shen X, et al. 2024 Nature 634 579
Google Scholar
[65] Wxu W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. 67 117402
Google Scholar
[66] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003
Google Scholar
[67] Zhu Z, Pan B, Nie L, et al. 2023 Innovation 4 100459
Google Scholar
[68] Lin G, Ma J 2023 Innovation 4 100484
Google Scholar
[69] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668
Google Scholar
[70] 王颖, 殳蕾 2024 73 197601
Google Scholar
Wang Y, Shu L 2024 Acta Phys. Sin. 73 197601
Google Scholar
[71] Paddison J A, Daum M, Dun Z, Ehlers G, Liu Y, Stone M B, Zhou H, Mourigal M 2017 Nat. Phys. 13 117
Google Scholar
[72] Chillal S, Iqbal Y, Jeschke H O, Rodriguez-Rivera J A, Lake B 2020 Nat. Commun. 11 2348
Google Scholar
[73] Bansal D, Niedziela J L, Sinclair R, Garlea V O, Abernathy D L, Chi S, Ren Y, Zhou H, Delaire O 2018 Nat. Commun. 9 15
Google Scholar
[74] Wei B, Sun Q, Li C, Hong J 2021 Sci. China Phys. Mech. 64 117001
Google Scholar
[75] Ren Q, Gupta M K, Jin M, et al. 2023 Nat. Mater. 22 999
Google Scholar
[76] Han S, Dai S, Ma J, et al. 2023 Nat. Phys. 19 1649
Google Scholar
[77] Kofu M, Hashimoto N, Akiba H, Kobayashi H, Kitagawa H, Iida K, Nakamura M, Yamamuro O 2017 Phys. Rev. B 96 054304
Google Scholar
[78] Shrestha U R, Mamontov E, O’Neill H M, Zhang Q, Kolesnikov A I, Chu X 2022 Innovation 3 100199
Google Scholar
[79] Hong L, Jain N, Cheng X, Bernal A, Tyagi M, Smith J C 2016 Sci. Adv. 2 e1600886
Google Scholar
计量
- 文章访问数: 1208
- PDF下载量: 81
- 被引次数: 0