Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on the elastic and thermal properties of Ca0.5Sr0.5TiO3

Shao Dong-Yuan Hui Qun Li Xiao Chen Jing-Jing Li Chun-Mei Cheng Nan-Pu

Citation:

First-principles study on the elastic and thermal properties of Ca0.5Sr0.5TiO3

Shao Dong-Yuan, Hui Qun, Li Xiao, Chen Jing-Jing, Li Chun-Mei, Cheng Nan-Pu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, Ca/Sr atoms are confirmed to have symmetric distributions on 4c sites by using the minimum energy principle, and the stable crystal structure of Ca0.5Sr0.5TiO3 is built. The lattice parameters, elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio of Ca0.5Sr0.5TiO3 (CST50) are investigated by the plane wave pseuedopotential method based on the first-principles density functional theory within the local density approximate (LDA) and generalized gradient approximation. The properties of planar acoustic velocity are studied by Christoffel equation, and the minimum thermal conductivity is investigated with Cahill and Cahill-Pohl models. The results show that the calculated lattice parameters are consistent with the corresponding experimental values. The larger calculated elastic constasnts C11, C22, and C33 suggest the incompressibility along the principle axes. The bulk modulus B is larger than the shear modulus G; G/BLDA = 0.5789 and G/BGGA = 0.5999, indicating that CST50 is a brittle material. The three-dimensional image of Young's modulus along [100], [010], and [001] crystal orientations shows the anisotropic elasticity of CST50. The planar projections of Young's modulus in (001) and (010) planes show the stronger anisotropy than in (100) plane and all the planar projections have two-fold symmetry. The Poisson's ratio exhibits the incompressbility of CST50. The universal elastic anisotropy indexes ALDAU = 0.0235 and AGGAU= 0.0341 indicate the weak anisotropy of CST50. The planar acoustic wave which has a branch of longitudinal wave and two branches of transverse wave is anisotropic along (010) and (001) planes and isotropic along (100) plane, and all the corresponding planar projections have two-fold symmetry. The minimum thermal conductivity calculated in Cahill model is isotropic in each plane, while the minimum thermal conductivity calculated in Cahill-Pohl model is proportional to the second power of T under low temperatures and reaches a constant at high temperatures. In the quasi harmonic Debye model, the molar heat capacity and thermal expansion coefficient of CST50 are close to those of calcium titanate, indicating that CST50 has the stable thermal expansion property at high temperatures. The direct band gap of CST50 is 2.19 eV and the bottom of the valence band is mainly determined by the electron orbitals of Ti-3d and O-2p. The analysis of the charge populations shows that the covalence of Ti–O is stronger than those of Sr–O and Ca–O, and the band length of Ti–O is shorter than those of Sr–O and Ca–O; (200), (110) and (002) planar contour charge densities indicate that Ti atoms interact strongly with O atoms. The charge population and contour charge density prove that CST50 has a stable Ti–O octahedral structure.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171156) and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2014C008).
    [1]

    Yang X, Fu J, Jin C, Chen J, Liang C, Wu M, Zhou W 2010 J. Am. Chem. Soc. 132 14279

    [2]

    van Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 12 6156

    [3]

    Souza A E, Almeida Santos G T, Silva R A, Moreira M L, Volanti E C, Teixeira S R, Longo E 2012 Int. J. Appl. Ceram. Technol. 9 186

    [4]

    Ouillon R, Pinan-Lucarre J P, Ranson P, Pruzan P, Mishra S K, Ranjan R, Pandey D 2002 J. Phys: Condens. Matter 14 2079

    [5]

    Bednorz J G, Mller K A 1984 Phys. Rev. Lett. 52 2289

    [6]

    Mishra S K, Ranjan R, Pandey D, Stokes H T 2005 J. Solid State Chem. 178 2846

    [7]

    Yamanaka T, Hirai N, Komatsu Y 2002 Am. Mineral. 87 1183

    [8]

    Qin S, Becerro A I, Seifert F, Gottsmann J, Jiang J 2000 J. Mate. Chem. 10 1609

    [9]

    Harrison R J, Redfern S A T, Street J 2003 Am. Mineral. 88 574

    [10]

    Ranjan R, Pandey D, Schuddinck W, Richard O, de Meulenaere P, van Landuyt J, van Tendeloo G 2001 J. Solid State Chem. 162 20

    [11]

    Carpenter M A, Howard C J, Knight K S, Zhang Z 2006 J. Phys: Condens. Matter 18 10725

    [12]

    Mishra S K, Ranjan R, Pandey D, Ranson P, Ouillon R, Pinan-Lucarre J P, Pruzan P 2006 J. Phys: Condens. Matter 18 1899

    [13]

    Hui Q, Dove M T, Tucker M G, Redfern S A, Keen D A 2007 J. Phys: Condens. Matter 19 335214

    [14]

    Pandech N, Sarasamak K, Limpijumnong S 2015 J. Appl. Phys. 117 174108

    [15]

    Sakhya A P, Maibam J, Saha S, Chanda S, Dutta A, Sharma B I, Thapa R K, Sinha T P 2015 Indian J. Pure Appl. Phys. 53 102

    [16]

    Walsh J N, Taylor P A, Buckley A, Darling T W, Schreuer J, Carpenter M A 2008 Phys. Earth Planet. In. 167 110

    [17]

    Ashman C R, Hellberg C S, Halilov S 2010 Phys. Rev. B 82 024112

    [18]

    Yang C Y, Zhang R 2014 Chin. Phys. B 23 026301

    [19]

    Perks N J, Zhang Z, Harrison R J, Carpenter M A 2014 J. Phys: Condens. Matter 26 505402

    [20]

    Aso R, Kan D, Shimakawa Y 2014 Cryst. Growth Des. 14 2128

    [21]

    Kovalevsky A V, Populoh S, Patricio S G, Thiel P, Ferro M C, Fagg D P, Weidenkaff A 2015 J. Phys. Chem. C 119 4466

    [22]

    Lima B S, da Luz M S, Oliveira F S, Alves L M S, Santos C A M, Jomard F, Sidis Y, Bourges P, Harms S, Grams C P, Hemberger J, Lin X, Fauque B, Behnia K 2015 Phys. Rev. B 91 045108

    [23]

    Wang J D, Dai J Q, Song Y M, Zhang H, Niu Z H 2014 Acta Phys. Sin. 63 126301 (in Chinese) [王江舵, 代建清, 宋玉敏, 张虎, 牛之慧 2014 63 126301]

    [24]

    Kong X L, Hou Q Y, Su X Y, Qi Y H, Zhi X F 2009 Acta Phys. Sin. 58 4128 (in Chinese) [孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬 2009 58 4128]

    [25]

    Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Goldfarb D 1970 Math. Comput. 24 23

    [31]

    Shanno D F 1970 Math. Comput. 24 647

    [32]

    Wu Z, Zhao E, Xiang H P, Hao X F, Liu, X J, Meng J 2007 Phys. Rev. B 76 054115

    [33]

    Hill R 1952 Proc. Phys. Soc. A 65 349

    [34]

    Pugh S F 1954 Philos. Mag. 45 823

    [35]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [36]

    Nye J F 1964 Physical Properties of Crystals (Oxford: Clarendon Press) pp130-145

    [37]

    Foley B M, Brown-Shaklee H J, Duda J C, Cheaito R, Gibbons B J, Medlin D, Medlin D, Ihlefeld J F, Hopkins P E 2012 Appl. Phys. Lett. 101 231908

    [38]

    Wang Y, Fujinami K, Zhang R, Wan C, Wang N, Ba Y, Koumoto K 2010 Appl. Phys. Express 3 031101

    [39]

    Cahill D G, Watson S K, Pohl R O 1988 Ann. Rev. Phys. Chem. 39 93

    [40]

    Wong J, Krisch M, Farber D L, Occelli F, Xu R, Chiang T C, Clatterbuck D, Schwartz A J, Wall M, Boro C 2005 Phys. Rev. B 72 064115

    [41]

    Costescu R M, Bullen A J, Matamis G, O'Hara K E, Cahill D G 2002 Phys. Rev. B 65 094205

    [42]

    Yang H Y, Ohishi Y J, Kurosaki K, Muta H, Yamanaka 2010 J. Alloys Compd. 504 201

    [43]

    Yamanaka S, Kurosaki K, Maekawa T, Kobayashi S I, Uno M 2005 J. Nucl. Mater. 344 61

    [44]

    Webb S, Jackson I, Gerald J F 1999 Phys. Earth Planet. In. 115 259

    [45]

    Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57

    [46]

    Boudali A, Khodja M D, Amrani B, Amrani B, Bourbie D, Amara K, Abada A 2009 Phys. Lett. A 373 879

    [47]

    Boudali A, Abada A, Driss Khodja M D, Amrani B, Amara K, Khodja F D, Elias A 2010 Phys. B: Condens. Matter 405 3879

    [48]

    Souza J A, Rino J P 2011 Acta Mater. 59 1409

  • [1]

    Yang X, Fu J, Jin C, Chen J, Liang C, Wu M, Zhou W 2010 J. Am. Chem. Soc. 132 14279

    [2]

    van Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 12 6156

    [3]

    Souza A E, Almeida Santos G T, Silva R A, Moreira M L, Volanti E C, Teixeira S R, Longo E 2012 Int. J. Appl. Ceram. Technol. 9 186

    [4]

    Ouillon R, Pinan-Lucarre J P, Ranson P, Pruzan P, Mishra S K, Ranjan R, Pandey D 2002 J. Phys: Condens. Matter 14 2079

    [5]

    Bednorz J G, Mller K A 1984 Phys. Rev. Lett. 52 2289

    [6]

    Mishra S K, Ranjan R, Pandey D, Stokes H T 2005 J. Solid State Chem. 178 2846

    [7]

    Yamanaka T, Hirai N, Komatsu Y 2002 Am. Mineral. 87 1183

    [8]

    Qin S, Becerro A I, Seifert F, Gottsmann J, Jiang J 2000 J. Mate. Chem. 10 1609

    [9]

    Harrison R J, Redfern S A T, Street J 2003 Am. Mineral. 88 574

    [10]

    Ranjan R, Pandey D, Schuddinck W, Richard O, de Meulenaere P, van Landuyt J, van Tendeloo G 2001 J. Solid State Chem. 162 20

    [11]

    Carpenter M A, Howard C J, Knight K S, Zhang Z 2006 J. Phys: Condens. Matter 18 10725

    [12]

    Mishra S K, Ranjan R, Pandey D, Ranson P, Ouillon R, Pinan-Lucarre J P, Pruzan P 2006 J. Phys: Condens. Matter 18 1899

    [13]

    Hui Q, Dove M T, Tucker M G, Redfern S A, Keen D A 2007 J. Phys: Condens. Matter 19 335214

    [14]

    Pandech N, Sarasamak K, Limpijumnong S 2015 J. Appl. Phys. 117 174108

    [15]

    Sakhya A P, Maibam J, Saha S, Chanda S, Dutta A, Sharma B I, Thapa R K, Sinha T P 2015 Indian J. Pure Appl. Phys. 53 102

    [16]

    Walsh J N, Taylor P A, Buckley A, Darling T W, Schreuer J, Carpenter M A 2008 Phys. Earth Planet. In. 167 110

    [17]

    Ashman C R, Hellberg C S, Halilov S 2010 Phys. Rev. B 82 024112

    [18]

    Yang C Y, Zhang R 2014 Chin. Phys. B 23 026301

    [19]

    Perks N J, Zhang Z, Harrison R J, Carpenter M A 2014 J. Phys: Condens. Matter 26 505402

    [20]

    Aso R, Kan D, Shimakawa Y 2014 Cryst. Growth Des. 14 2128

    [21]

    Kovalevsky A V, Populoh S, Patricio S G, Thiel P, Ferro M C, Fagg D P, Weidenkaff A 2015 J. Phys. Chem. C 119 4466

    [22]

    Lima B S, da Luz M S, Oliveira F S, Alves L M S, Santos C A M, Jomard F, Sidis Y, Bourges P, Harms S, Grams C P, Hemberger J, Lin X, Fauque B, Behnia K 2015 Phys. Rev. B 91 045108

    [23]

    Wang J D, Dai J Q, Song Y M, Zhang H, Niu Z H 2014 Acta Phys. Sin. 63 126301 (in Chinese) [王江舵, 代建清, 宋玉敏, 张虎, 牛之慧 2014 63 126301]

    [24]

    Kong X L, Hou Q Y, Su X Y, Qi Y H, Zhi X F 2009 Acta Phys. Sin. 58 4128 (in Chinese) [孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬 2009 58 4128]

    [25]

    Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Goldfarb D 1970 Math. Comput. 24 23

    [31]

    Shanno D F 1970 Math. Comput. 24 647

    [32]

    Wu Z, Zhao E, Xiang H P, Hao X F, Liu, X J, Meng J 2007 Phys. Rev. B 76 054115

    [33]

    Hill R 1952 Proc. Phys. Soc. A 65 349

    [34]

    Pugh S F 1954 Philos. Mag. 45 823

    [35]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [36]

    Nye J F 1964 Physical Properties of Crystals (Oxford: Clarendon Press) pp130-145

    [37]

    Foley B M, Brown-Shaklee H J, Duda J C, Cheaito R, Gibbons B J, Medlin D, Medlin D, Ihlefeld J F, Hopkins P E 2012 Appl. Phys. Lett. 101 231908

    [38]

    Wang Y, Fujinami K, Zhang R, Wan C, Wang N, Ba Y, Koumoto K 2010 Appl. Phys. Express 3 031101

    [39]

    Cahill D G, Watson S K, Pohl R O 1988 Ann. Rev. Phys. Chem. 39 93

    [40]

    Wong J, Krisch M, Farber D L, Occelli F, Xu R, Chiang T C, Clatterbuck D, Schwartz A J, Wall M, Boro C 2005 Phys. Rev. B 72 064115

    [41]

    Costescu R M, Bullen A J, Matamis G, O'Hara K E, Cahill D G 2002 Phys. Rev. B 65 094205

    [42]

    Yang H Y, Ohishi Y J, Kurosaki K, Muta H, Yamanaka 2010 J. Alloys Compd. 504 201

    [43]

    Yamanaka S, Kurosaki K, Maekawa T, Kobayashi S I, Uno M 2005 J. Nucl. Mater. 344 61

    [44]

    Webb S, Jackson I, Gerald J F 1999 Phys. Earth Planet. In. 115 259

    [45]

    Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57

    [46]

    Boudali A, Khodja M D, Amrani B, Amrani B, Bourbie D, Amara K, Abada A 2009 Phys. Lett. A 373 879

    [47]

    Boudali A, Abada A, Driss Khodja M D, Amrani B, Amara K, Khodja F D, Elias A 2010 Phys. B: Condens. Matter 405 3879

    [48]

    Souza J A, Rino J P 2011 Acta Mater. 59 1409

  • [1] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping. First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys. Acta Physica Sinica, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [3] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [4] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [5] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] Zhao Rong-Da, Zhu Jing-Chuan, Liu Yong, Lai Zhong-Hong. First-principles study of FeAl(B2) microalloyed with La, Ac, Sc and Y. Acta Physica Sinica, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [7] Su Rui, Long Yao, Jiang Sheng-Li, He Jie, Chen Jun. Elastic properties of β-HMX under extra pressure: a first principles study. Acta Physica Sinica, 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [8] Yu Ben-Hai, Chen Dong. First-principles study on the electronic structure and phase transition of α-, β- and γ-Si3N4. Acta Physica Sinica, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [9] Deng Yang, Wang Ru-Zhi, Xu Li-Chun, Fang Hui, Yan Hui. Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations. Acta Physica Sinica, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [10] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [11] Zhao Kun, Zhang Kun, Wang Jia-Jia, Yu Jin, Wu San-Xie. A first principles study on tetragonal distortion, magnetic property and elastic constants of Pd2 CrAl Heusler alloy. Acta Physica Sinica, 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [12] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [13] Fan Kai-Min, Yang Li, Peng Shu-Ming, Long Xing-Gui, Wu Zhong-Cheng, Zu Xiao-Tao. First-principles calculation for elastic constantsof α-ScDx(D=H, He). Acta Physica Sinica, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [14] Liu Cheng-Cheng, Cao Quan-Xi. First-principles study of the thermal transport property of Y3Al5O12. Acta Physica Sinica, 2010, 59(4): 2697-2702. doi: 10.7498/aps.59.2697
    [15] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [16] Li Xiao-Feng, Ji Guang-Fu, Peng Wei-Min, Shen Xiao-Meng, Zhao Feng. Elastic constants, electronic structure and optical properties of solid krypton under pressure by first-principles calculations. Acta Physica Sinica, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [17] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [18] Yu Xiao, Luo Xiao-Guang, Chen Gui-Feng, Shen Jun, Li Yang-Xian. First principle calculation of structural, elastic and electronic properties of XHfO3(X=Ba, Sr). Acta Physica Sinica, 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
    [19] Zhou Jing-Jing, Gao Tao, Zhang Chuan-Yu, Zhang Yun-Guang. First-principles study on the microarrangement of Al and structure and elasticity of LaNi3.75Al1.25. Acta Physica Sinica, 2007, 56(4): 2311-2317. doi: 10.7498/aps.56.2311
    [20] Chen Chang-Bo, Liu Zhi_Ming, Ma Yan_Ming, Cui Tian, Liu Bing-Bing, Zou Guang_Tian. Influence of pressure and impurity hydrogen on the elastic property of metal lithium. Acta Physica Sinica, 2007, 56(5): 2828-2832. doi: 10.7498/aps.56.2828
Metrics
  • Abstract views:  6222
  • PDF Downloads:  396
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2015
  • Accepted Date:  16 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map