Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inverse problem of Mei symmetry for a general holonomic system

Huang Wei-Li

Citation:

Inverse problem of Mei symmetry for a general holonomic system

Huang Wei-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Inverse problems in dynamics are the basic problems in astronautics, rocket dynamics, and motion planning theory, etc. Mei symmetry is a kind of new symmetry where the dynamical function in differential equations of motion still satisfies the equation's primary form under infinitesimal transformations of the group. Mei symmetry and its inverse problem of dynamics for a general holonomic system in generalized coordinates are studied. Firstly, the direct problem of dynamics of the system is proposed and solved. Introducing a one-parameter infinitesimal transformation group with respect to time and coordinates, the infinitesimal generator vector and its first prolonged vector are obtained. Based on the discussion of the differential equations of motion for a general holonomic system determined by n generalized coordinates, their Lagrangian and non-potential generalized forces are made to have an infinitesimal transformation, the definition of Mei symmetry about differential equation of motion for the system is then provided. Ignoring the high-order terms in the infinitesimal transformation, the determining equation of Mei symmetry is given. With the aid of a structure equation which the gauge function satisfies, the system's corresponding conserved quantities are derived. Secondly, the inverse problem for the Mei symmetry of the system is studied. The formulation of the inverse problem of Mei symmetry is that we use the known conserved quantity to seek the corresponding Mei symmetry. The method is: considering a given integral as a Noether conserved quantity obtained by Mei symmetry, the generators of the infinitesimal transformations can be obtained by the inverse Noether theorem. Then the question whether the obtained generators are Mei symmetrical or not is verified by the determining equation, and the effect of generators' changes on the symmetries is discussed. It has been shown from the studies that the changes of the generators have no effect on the Noether and Lie symmetries, but have effects on the Mei symmetry. However, under certain conditions, while adjusting the gauge function, changes of generators can also have no effect on the Mei symmetry. In the end of the paper, an example for the system is provided to illustrate the application of the result.
      Corresponding author: Huang Wei-Li, amuu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10932002), and the Natural Science Foundation of Zhejiang Province of China (Grant No. LY12A02008).
    [1]

    Galiullin A S 1986 Methods of solution of inverse problems of dynamics (Moscow: Nauka) (in Russian)

    [2]

    Mei F X 2009 Inverse Problems of Dynamics(Beijing: National Defense Industry Press) (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社)]

    [3]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [4]

    Jia L Q, Xie J F, Luo S K 2008 Chin. Phys. B 17 1560

    [5]

    Cai J L 2009 Acta Phys. Pol. A 115 854

    [6]

    Wang P, Fang J H, Wang X M 2009 Chin. Phys. B 18 1312

    [7]

    Cai J L 2010 Chin. J. Phys. 48 728

    [8]

    Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 60 060201]

    [9]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社)]

    [10]

    Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯, 张永发 2008 约束系统动力学研究进展 (北京: 科学出版社)]

    [11]

    Jia L Q, Zheng S W, Zhang Y Y 2007 Acta Phys. Sin. 56 5575 (in Chinese) [贾利群, 郑世旺, 张耀宇 2007 56 5575]

    [12]

    Cai J L, Luo S K, Mei F X 2008 Chin. Phys. B 17 3170

    [13]

    Luo Y P 2009 Int. J. Theor. Phys. 48 2665

    [14]

    Cai J L 2010 Acta Phys. Pol. A 117 445

    [15]

    Cui J C, Zhang Y Y, Yang X F, Jia L Q 2010 Chinese Physics B 19 030304

    [16]

    Cai J L 2010 Int. J. Theor. Phy. 49 201

    [17]

    Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475

    [18]

    Cai J L 2012 Nonlinear Dyn. 69 487

    [19]

    Xia L L, Chen L Q 2012 Nonlinear Dynamics 70 1223

    [20]

    Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807

    [21]

    Jiang W A, Li L, Li Z J, Luo S K 2012 Nonlinear Dyn. 67 1075

    [22]

    Cai J L, Shi S S, Fang H J, Xu J 2012 Meccanica 47 63

    [23]

    Cai J L, Mei F X 2012 J. Mech. 28 589

    [24]

    Cai J L, Shi S S 2012 Acta Phys. Sin. 61 030201 (in Chinese) [蔡建乐, 史生水 2012 61 030201]

    [25]

    Jiang W A, Li L, Li Z J, Luo S K 2012 Nonlinear Dyn. 67 1075

    [26]

    Jiang W A, Li Z J, Luo S K 2011 Chinese Physics B 20 030202

    [27]

    Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807

    [28]

    Liu F L, Mei F X 1993 Appl. Math. Mech. -Engl. Ed. 14 327

    [29]

    Li G C, Mei F X 2006 Chin. Phys. B 15 1669

    [30]

    Ibort L A, Solano J M 1991 Inverse Problems. 7 713

    [31]

    Menini L, Tornambe A 2012 Nonlinear Dyn. 69 1965

  • [1]

    Galiullin A S 1986 Methods of solution of inverse problems of dynamics (Moscow: Nauka) (in Russian)

    [2]

    Mei F X 2009 Inverse Problems of Dynamics(Beijing: National Defense Industry Press) (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社)]

    [3]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [4]

    Jia L Q, Xie J F, Luo S K 2008 Chin. Phys. B 17 1560

    [5]

    Cai J L 2009 Acta Phys. Pol. A 115 854

    [6]

    Wang P, Fang J H, Wang X M 2009 Chin. Phys. B 18 1312

    [7]

    Cai J L 2010 Chin. J. Phys. 48 728

    [8]

    Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 60 060201]

    [9]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社)]

    [10]

    Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯, 张永发 2008 约束系统动力学研究进展 (北京: 科学出版社)]

    [11]

    Jia L Q, Zheng S W, Zhang Y Y 2007 Acta Phys. Sin. 56 5575 (in Chinese) [贾利群, 郑世旺, 张耀宇 2007 56 5575]

    [12]

    Cai J L, Luo S K, Mei F X 2008 Chin. Phys. B 17 3170

    [13]

    Luo Y P 2009 Int. J. Theor. Phys. 48 2665

    [14]

    Cai J L 2010 Acta Phys. Pol. A 117 445

    [15]

    Cui J C, Zhang Y Y, Yang X F, Jia L Q 2010 Chinese Physics B 19 030304

    [16]

    Cai J L 2010 Int. J. Theor. Phy. 49 201

    [17]

    Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475

    [18]

    Cai J L 2012 Nonlinear Dyn. 69 487

    [19]

    Xia L L, Chen L Q 2012 Nonlinear Dynamics 70 1223

    [20]

    Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807

    [21]

    Jiang W A, Li L, Li Z J, Luo S K 2012 Nonlinear Dyn. 67 1075

    [22]

    Cai J L, Shi S S, Fang H J, Xu J 2012 Meccanica 47 63

    [23]

    Cai J L, Mei F X 2012 J. Mech. 28 589

    [24]

    Cai J L, Shi S S 2012 Acta Phys. Sin. 61 030201 (in Chinese) [蔡建乐, 史生水 2012 61 030201]

    [25]

    Jiang W A, Li L, Li Z J, Luo S K 2012 Nonlinear Dyn. 67 1075

    [26]

    Jiang W A, Li Z J, Luo S K 2011 Chinese Physics B 20 030202

    [27]

    Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807

    [28]

    Liu F L, Mei F X 1993 Appl. Math. Mech. -Engl. Ed. 14 327

    [29]

    Li G C, Mei F X 2006 Chin. Phys. B 15 1669

    [30]

    Ibort L A, Solano J M 1991 Inverse Problems. 7 713

    [31]

    Menini L, Tornambe A 2012 Nonlinear Dyn. 69 1965

  • [1] Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of the new exact and approximate conserved quantity deduced from Mei symmetry for a weakly nonholonomic system. Acta Physica Sinica, 2013, 62(11): 110201. doi: 10.7498/aps.62.110201
    [2] Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204. doi: 10.7498/aps.61.200204
    [3] Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201. doi: 10.7498/aps.60.060201
    [4] Liu Xiao-Wei, Li Yuan-Cheng. Another kind of conserved quantity induced by Mei symmetry of mechanico-electrical system. Acta Physica Sinica, 2011, 60(11): 111102. doi: 10.7498/aps.60.111102
    [5] Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941. doi: 10.7498/aps.59.2939
    [6] Ding Guang-Tao. New kind of inverse problems of Noether’s theory for Hamiltonian systems. Acta Physica Sinica, 2010, 59(3): 1423-1427. doi: 10.7498/aps.59.1423
    [7] Liu Yang-Kui. A kind of conserved quantity of Mei symmetry for general holonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 7-10. doi: 10.7498/aps.59.7
    [8] Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica, 2010, 59(8): 5209-5212. doi: 10.7498/aps.59.5209
    [9] Fang Jian-Hui. A kind of conserved quantity of Mei symmetry for Lagrange system. Acta Physica Sinica, 2009, 58(6): 3617-3619. doi: 10.7498/aps.58.3617
    [10] Cai Jian-Le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27. doi: 10.7498/aps.58.22
    [11] Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010. doi: 10.7498/aps.57.2006
    [12] Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica, 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714
    [13] Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica, 2007, 56(10): 5575-5579. doi: 10.7498/aps.56.5575
    [14] Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [15] Fang Jian-Hui, Peng Yong, Liao Yong-Pan. On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica, 2005, 54(2): 496-499. doi: 10.7498/aps.54.496
    [16] Fang Jian-Hui, Liao Yong-Pan, Peng Yong. Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica, 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [17] Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
    [18] Zhang Yi, Fan Cun-Xin, Ge Wei-Kuan. A new type of conserved quantities for Birkhoffian systems*. Acta Physica Sinica, 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
    [19] Li Hong, Fang Jian-Hui. Mei symmetry of variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2004, 53(9): 2807-2810. doi: 10.7498/aps.53.2807
    [20] Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944. doi: 10.7498/aps.52.2941
Metrics
  • Abstract views:  6213
  • PDF Downloads:  182
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2015
  • Accepted Date:  17 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map