-
研究Lagrange系统Mei对称性的Ⅲ型结构方程和Ⅲ型Mei守恒量. 在群的无限小变换下,由Lagrange系统Mei对称性的定义和判据,得到Lagrange系统Mei对称性的Ⅲ型结构方程和Ⅲ型Mei守恒量. 举例说明结果的应用.
-
关键词:
- Lagrange系统 /
- Mei对称性 /
- Ⅲ型结构方程 /
- Ⅲ型Mei守恒量
Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system are studied. Under the infinitesimal transformation of groups, type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system are obtained from the definition and the criterion of Mei symmetry for a Lagrangian system. Finally, an example is given to illustrate the application of the results.-
Keywords:
- Lagrangian system /
- Mei symmetry /
- type Ⅲ structural equation /
- type Ⅲ Mei conserved quantity
[1] [1]Mei F X 2000 J.Beijing Inst.Technol. 9 120
[2] [2]Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing:Beijing Institute of Technology Press) (in Chinese)[梅凤翔 2004 约束力学系统的对称性与守恒量(北京:北京理工大学出版社)]
[3] [3]Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯、张永发 2008 约束系统动力学研究进展(北京:科学出版社)]
[4] [4]Jia L Q,Xie J F, Zheng S W 2008 Chin.Phys. B 17 0017
[5] [5]Ding N, Fang J H 2008 Chin.Phys. B 17 1550
[6] [6]Jia L Q,Xie J F, Luo S K 2008 Chin.Phys. B 17 1560
[7] [7]Zhang M J,Fang J H,Zhang X N, Lu K 2008 Chin.Phys. B 17 1957
[8] [8]Fang J H,Liu Y K, Zhang X N 2008 Chin.Phys. B 17 1962
[9] [9]Huang X H,Zhang X B. Shi S Y 2008 Acta Phys.Sin.57 6056 (in Chinese)[黄晓虹、张晓波、施沈阳 2008 57 6056]
[10] ]Ge W K 2008 Acta Phys.Sin.57 6714 (in Chinese)[葛伟宽 2008 57 6714]
[11] ]Cai J L 2009 Acta Phys.Sin.58 22(in Chinese)[蔡建乐 2009 58 22]
[12] ]Wang P,Fang J H, Wang X M 2009 Chin.Phys. B 18 1312
[13] ]Cui J C,Zhang Y Y, Jia L Q 2009 Chin.Phys. B 18 1731
[14] ]Cui J C,Jia L Q, Yang X F 2009 J. Henan Norm. Univ. (Natural Science) 37(2) 70(in Chinese)[崔金超、贾利群、杨新芳 2009 河南师范大学学报(自然科学版)37(2) 70]
[15] ]Cui J C, Zhang Y Y, Yang X F, Jia L Q 2010 Chin.Phys. B 19 030304-1
[16] ]Pang T, Fang J H, Zhang M J, Lin P, Lu K 2009 Chin.Phys. B 18 3150
[17] ]Fang J H 2009 Acta Phys.Sin.58 3617 (in Chinese)[方建会 2009 58 3617]
-
[1] [1]Mei F X 2000 J.Beijing Inst.Technol. 9 120
[2] [2]Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing:Beijing Institute of Technology Press) (in Chinese)[梅凤翔 2004 约束力学系统的对称性与守恒量(北京:北京理工大学出版社)]
[3] [3]Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯、张永发 2008 约束系统动力学研究进展(北京:科学出版社)]
[4] [4]Jia L Q,Xie J F, Zheng S W 2008 Chin.Phys. B 17 0017
[5] [5]Ding N, Fang J H 2008 Chin.Phys. B 17 1550
[6] [6]Jia L Q,Xie J F, Luo S K 2008 Chin.Phys. B 17 1560
[7] [7]Zhang M J,Fang J H,Zhang X N, Lu K 2008 Chin.Phys. B 17 1957
[8] [8]Fang J H,Liu Y K, Zhang X N 2008 Chin.Phys. B 17 1962
[9] [9]Huang X H,Zhang X B. Shi S Y 2008 Acta Phys.Sin.57 6056 (in Chinese)[黄晓虹、张晓波、施沈阳 2008 57 6056]
[10] ]Ge W K 2008 Acta Phys.Sin.57 6714 (in Chinese)[葛伟宽 2008 57 6714]
[11] ]Cai J L 2009 Acta Phys.Sin.58 22(in Chinese)[蔡建乐 2009 58 22]
[12] ]Wang P,Fang J H, Wang X M 2009 Chin.Phys. B 18 1312
[13] ]Cui J C,Zhang Y Y, Jia L Q 2009 Chin.Phys. B 18 1731
[14] ]Cui J C,Jia L Q, Yang X F 2009 J. Henan Norm. Univ. (Natural Science) 37(2) 70(in Chinese)[崔金超、贾利群、杨新芳 2009 河南师范大学学报(自然科学版)37(2) 70]
[15] ]Cui J C, Zhang Y Y, Yang X F, Jia L Q 2010 Chin.Phys. B 19 030304-1
[16] ]Pang T, Fang J H, Zhang M J, Lin P, Lu K 2009 Chin.Phys. B 18 3150
[17] ]Fang J H 2009 Acta Phys.Sin.58 3617 (in Chinese)[方建会 2009 58 3617]
计量
- 文章访问数: 8346
- PDF下载量: 676
- 被引次数: 0