搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱非完整系统Mei对称性导致的新型精确和近似守恒量

韩月林 王肖肖 张美玲 贾利群

引用本文:
Citation:

弱非完整系统Mei对称性导致的新型精确和近似守恒量

韩月林, 王肖肖, 张美玲, 贾利群

A type of the new exact and approximate conserved quantity deduced from Mei symmetry for a weakly nonholonomic system

Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun
PDF
导出引用
  • 研究弱非完整系统Lagrange方程的Mei对称性导致的一种结构方程和新型精确以及近似守恒量. 首先建立系统的Lagrange方程. 其次在群的无限小变换下, 给出了弱非完整系统及其一次近似系统Mei对称性的定义和判据, 然后得到了Mei对称性导致的新型结构方程、 新型精确和近似守恒量的表达式. 最后, 举例研究系统的精确新型守恒量和近似新型守恒量问题.
    A type of structural equation, new exact and approximate conserved quantity which are deduced from Mei symmetry of Lagrange equations for a weakly nonholonomic system, are investigated. First, Lagrange equations of weakly nonholonomic system are established. Next, under the infinitesimal transformations of Lie groups, the definition and the criterion of Mei symmetry for Lagrange equations in weakly nonholonomic systems and its first-degree approximate holonomic system are given. And then, the expressions of new structural equation and new exact and approximate conserved quantities of Mei symmetry for Lagrange equations in weakly nonholonomic systems are obtained. Finelly, an example is given to study the question of the exact and the approximate new conserved quantities.
    • 基金项目: 国家自然科学基金(批准号: 11142014)和江苏省普通高校研究生科研创新计划项目(批准号: CXLX12_0720)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11142014), and the scientific research and innovation plan for College Graduates of Jiangsu province, China (Grant No. CXLX12_0720).
    [1]

    Neimark J I, Fufaev N A 1972 Providence, RI:AMS

    [2]

    Bloch A M, Krishnaprasad P S, Marsden J E, Murray R M 1996 Arch. Rat. Mech. Anal. 136 21

    [3]

    Ostrovskaya S, Angels, 1998 ASME Appl. Mech. Rev. 51 415

    [4]

    Mei F X 2000 ASME Appl. Mech. Rev. 53 283

    [5]

    Zegzhda S A, Soltakhanov S K, Yushkov M P 2005 Moscow: FIMATLIT

    [6]

    Mei F X 1989 Beijing Inst. Technol. 9 10

    [7]

    Mei F X 1992 Chin. Sci. Bull. 37 1180

    [8]

    Mei F X 1995 Beijing Inst. Technol. 15 237

    [9]

    Noether A E 1918 Nachr Akad Wiss Gottingen Math. Phys. Kl 235

    [10]

    Mei F X 2000 Beijing Inst. Technol. 9 120

    [11]

    Zheng S W, Xie J F, Chen W C 2008 Chin. Phys. Lett. 25 809

    [12]

    Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese) [葛伟宽 2008 57 6714]

    [13]

    Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese) [蔡建乐 2009 58 22]

    [14]

    Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese) [方建会 2009 58 3617]

    [15]

    Zheng S W, Xie J F, Chen X W 2010 Acta Phys. Sin. 59 5209 (in Chinese) [郑世旺, 解加芳, 陈向伟 2010 59 5209]

    [16]

    Yang X F, Sun X T, Wang X X, Zhang M L, Jia L Q 2011 Acta Phys. Sin. 60 111101 (in Chinese) [杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群 2011 60 111101]

    [17]

    Cai J L 2012 Nonlinear Dyn. 69 487

    [18]

    Jia L Q, Wang X X, Zhang M L Han Y L 2012 Nonlinear Dyn. 69 1807

    [19]

    Chen X W, Li Y M, Zhao Y H 2005 Phys. Lett. A 337 274

    [20]

    Luo S K 2007 Chin. Phys. Lett. 24 2463

    [21]

    Cai J L 2008 Chin. Phys. Lett. 25 1523

    [22]

    Cai J L, Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese) [蔡建乐, 梅凤翔 2008 57 5369]

    [23]

    Jiang W A, Li Z J, Luo S K 2011 Chin. Phys. B 20 030202

    [24]

    Xu X J, Mei F X, Qin M C 2004 Acta Phys. Sin. 53 4021 (in Chinese) [许学军, 梅凤翔, 秦茂昌 2004 53 4021]

    [25]

    Cai J L, Luo S K, Mei F X 2008 Chin. Phys. B 17 3170

    [26]

    Cui J C, Zhang Y Y, Jia L Q 2009 Chin. Phys. B 18 1731

    [27]

    Xie Y L, Jia L Q 2010 Chin Phys. Lett. 27 120201

    [28]

    Zheng S W, Xie J F, Chen X W 2010 Acta Phys. Sin. 59 5209 (in Chinese) [郑世旺, 解加芳, 陈向伟 2010 59 5209]

    [29]

    Li Y C, Wang X M, Xia L L 2010 Acta Phys. Sin. 59 2935 (in Chinese) [李元成, 王小明, 夏丽莉 2010 59 2935]

    [30]

    Jia L Q, Sun X T, Zhang M L, Wang X X, Xie Y L 2011 Acta Phys. Sin. 60 084501 (in Chinese) [贾利群, 孙现亭, 张美玲, 王肖肖, 解银丽 2011 60 084501]

    [31]

    Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475

    [32]

    Li Z J, Luo S K 2012 Nonlinear Dyn. 70 1117

    [33]

    Luo S K, Li Z J, Li L 2012 Acta Mech. 223 2621

    [34]

    Luo S K, Li Z J, Peng W, Li L 2013 Acta Mech. 224 71

    [35]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 71 401

    [36]

    Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese) [梅凤翔 2003 52 1048]

    [37]

    Zhang Y, Fan C X, Ge W K 2004 Acta Phys. Sin. 53 3644 (in Chinese) [张毅, 范存新, 葛伟宽 2008 53 3644]

    [38]

    Fang J H, Liu Y K, Zhang X N 2008 Chin. Phys. B 17 1962

    [39]

    Jia L Q, Xie Y L, Zhang Y Y, Cui J C, Yang X F 2010 Acta Phys. Sin. 59 7552 (in Chinese) [贾利群, 解银丽, 张耀宇, 崔金超, 杨新芳 2010 59 7552]

    [40]

    Zhao L, Fu J L, Chen B Y 2011 Chin. Phys. B 20 040201

    [41]

    Han Y L, Sun X T, Wang X X, Zhang M L, Jia L Q 2012 Chin. Phys. B 21 120201

    [42]

    Mei F X 2004 Beijing Institute of Technology Press, Beijing

  • [1]

    Neimark J I, Fufaev N A 1972 Providence, RI:AMS

    [2]

    Bloch A M, Krishnaprasad P S, Marsden J E, Murray R M 1996 Arch. Rat. Mech. Anal. 136 21

    [3]

    Ostrovskaya S, Angels, 1998 ASME Appl. Mech. Rev. 51 415

    [4]

    Mei F X 2000 ASME Appl. Mech. Rev. 53 283

    [5]

    Zegzhda S A, Soltakhanov S K, Yushkov M P 2005 Moscow: FIMATLIT

    [6]

    Mei F X 1989 Beijing Inst. Technol. 9 10

    [7]

    Mei F X 1992 Chin. Sci. Bull. 37 1180

    [8]

    Mei F X 1995 Beijing Inst. Technol. 15 237

    [9]

    Noether A E 1918 Nachr Akad Wiss Gottingen Math. Phys. Kl 235

    [10]

    Mei F X 2000 Beijing Inst. Technol. 9 120

    [11]

    Zheng S W, Xie J F, Chen W C 2008 Chin. Phys. Lett. 25 809

    [12]

    Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese) [葛伟宽 2008 57 6714]

    [13]

    Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese) [蔡建乐 2009 58 22]

    [14]

    Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese) [方建会 2009 58 3617]

    [15]

    Zheng S W, Xie J F, Chen X W 2010 Acta Phys. Sin. 59 5209 (in Chinese) [郑世旺, 解加芳, 陈向伟 2010 59 5209]

    [16]

    Yang X F, Sun X T, Wang X X, Zhang M L, Jia L Q 2011 Acta Phys. Sin. 60 111101 (in Chinese) [杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群 2011 60 111101]

    [17]

    Cai J L 2012 Nonlinear Dyn. 69 487

    [18]

    Jia L Q, Wang X X, Zhang M L Han Y L 2012 Nonlinear Dyn. 69 1807

    [19]

    Chen X W, Li Y M, Zhao Y H 2005 Phys. Lett. A 337 274

    [20]

    Luo S K 2007 Chin. Phys. Lett. 24 2463

    [21]

    Cai J L 2008 Chin. Phys. Lett. 25 1523

    [22]

    Cai J L, Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese) [蔡建乐, 梅凤翔 2008 57 5369]

    [23]

    Jiang W A, Li Z J, Luo S K 2011 Chin. Phys. B 20 030202

    [24]

    Xu X J, Mei F X, Qin M C 2004 Acta Phys. Sin. 53 4021 (in Chinese) [许学军, 梅凤翔, 秦茂昌 2004 53 4021]

    [25]

    Cai J L, Luo S K, Mei F X 2008 Chin. Phys. B 17 3170

    [26]

    Cui J C, Zhang Y Y, Jia L Q 2009 Chin. Phys. B 18 1731

    [27]

    Xie Y L, Jia L Q 2010 Chin Phys. Lett. 27 120201

    [28]

    Zheng S W, Xie J F, Chen X W 2010 Acta Phys. Sin. 59 5209 (in Chinese) [郑世旺, 解加芳, 陈向伟 2010 59 5209]

    [29]

    Li Y C, Wang X M, Xia L L 2010 Acta Phys. Sin. 59 2935 (in Chinese) [李元成, 王小明, 夏丽莉 2010 59 2935]

    [30]

    Jia L Q, Sun X T, Zhang M L, Wang X X, Xie Y L 2011 Acta Phys. Sin. 60 084501 (in Chinese) [贾利群, 孙现亭, 张美玲, 王肖肖, 解银丽 2011 60 084501]

    [31]

    Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475

    [32]

    Li Z J, Luo S K 2012 Nonlinear Dyn. 70 1117

    [33]

    Luo S K, Li Z J, Li L 2012 Acta Mech. 223 2621

    [34]

    Luo S K, Li Z J, Peng W, Li L 2013 Acta Mech. 224 71

    [35]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 71 401

    [36]

    Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese) [梅凤翔 2003 52 1048]

    [37]

    Zhang Y, Fan C X, Ge W K 2004 Acta Phys. Sin. 53 3644 (in Chinese) [张毅, 范存新, 葛伟宽 2008 53 3644]

    [38]

    Fang J H, Liu Y K, Zhang X N 2008 Chin. Phys. B 17 1962

    [39]

    Jia L Q, Xie Y L, Zhang Y Y, Cui J C, Yang X F 2010 Acta Phys. Sin. 59 7552 (in Chinese) [贾利群, 解银丽, 张耀宇, 崔金超, 杨新芳 2010 59 7552]

    [40]

    Zhao L, Fu J L, Chen B Y 2011 Chin. Phys. B 20 040201

    [41]

    Han Y L, Sun X T, Wang X X, Zhang M L, Jia L Q 2012 Chin. Phys. B 21 120201

    [42]

    Mei F X 2004 Beijing Institute of Technology Press, Beijing

  • [1] 王廷志, 孙现亭, 韩月林. 非完整系统的共形不变性导致的新型守恒量.  , 2014, 63(9): 090201. doi: 10.7498/aps.63.090201
    [2] 韩月林, 孙现亭, 张耀宇, 贾利群. 完整系统Appell方程Mei对称性的共形不变性与守恒量.  , 2013, 62(16): 160201. doi: 10.7498/aps.62.160201
    [3] 刘洪伟, 李玲飞, 杨士通. Kepler方程的共形不变性、Mei对称性与守恒量.  , 2012, 61(20): 200202. doi: 10.7498/aps.61.200202
    [4] 蔡建乐, 史生水. Chetaev型非完整系统Mei对称性的共形不变性与守恒量.  , 2012, 61(3): 030201. doi: 10.7498/aps.61.030201
    [5] 孙现亭, 韩月林, 王肖肖, 张美玲, 贾利群. 完整系统Appell方程Mei对称性的一种新的守恒量.  , 2012, 61(20): 200204. doi: 10.7498/aps.61.200204
    [6] 姜文安, 罗绍凯. 广义Hamilton系统的Mei对称性导致的Mei守恒量.  , 2011, 60(6): 060201. doi: 10.7498/aps.60.060201
    [7] 贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量.  , 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [8] 贾利群, 孙现亭, 张美玲, 王肖肖, 解银丽. Nielsen方程Mei对称性导致的一种新型守恒量.  , 2011, 60(8): 084501. doi: 10.7498/aps.60.084501
    [9] 郑世旺, 解加芳, 陈向炜, 杜雪莲. 完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量.  , 2010, 59(8): 5209-5212. doi: 10.7498/aps.59.5209
    [10] 贾利群, 张耀宇, 杨新芳, 崔金超, 解银丽. Lagrange系统Mei对称性的Ⅲ型结构方程和Ⅲ型Mei守恒量.  , 2010, 59(5): 2939-2941. doi: 10.7498/aps.59.2939
    [11] 贾利群, 解银丽, 张耀宇, 崔金超, 杨新芳. Appell方程Mei对称性导致的一种新型守恒量.  , 2010, 59(11): 7552-7555. doi: 10.7498/aps.59.7552
    [12] 蔡建乐. 一般完整系统Mei对称性的共形不变性与守恒量.  , 2009, 58(1): 22-27. doi: 10.7498/aps.58.22
    [13] 葛伟宽. 弱非完整系统的近似守恒量.  , 2009, 58(10): 6729-6731. doi: 10.7498/aps.58.6729
    [14] 丁宁, 方建会. 非完整力学系统Mei对称性的摄动及其导致的一类新型Mei绝热不变量.  , 2009, 58(11): 7440-7446. doi: 10.7498/aps.58.7440
    [15] 葛伟宽. 一类完整系统的Mei对称性与守恒量.  , 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714
    [16] 贾利群, 罗绍凯, 张耀宇. 非完整系统Nielsen方程的Mei对称性与Mei守恒量.  , 2008, 57(4): 2006-2010. doi: 10.7498/aps.57.2006
    [17] 贾利群, 郑世旺, 张耀宇. 事件空间中非Chetaev型非完整系统的Mei对称性与Mei守恒量.  , 2007, 56(10): 5575-5579. doi: 10.7498/aps.56.5575
    [18] 郑世旺, 贾利群. 非完整系统Tzénoff方程的Mei对称性和守恒量.  , 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [19] 张 毅, 葛伟宽. 相对论性力学系统的Mei对称性导致的新守恒律.  , 2005, 54(4): 1464-1467. doi: 10.7498/aps.54.1464
    [20] 张 毅. 广义经典力学系统的对称性与Mei守恒量.  , 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
计量
  • 文章访问数:  5927
  • PDF下载量:  446
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-28
  • 修回日期:  2013-01-23
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map