搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒强激光场中氢原子团簇的各向异性膨胀

张春艳 赵清 傅立斌 刘杰

引用本文:
Citation:

飞秒强激光场中氢原子团簇的各向异性膨胀

张春艳, 赵清, 傅立斌, 刘杰

Anisotropic explosions of hydrogen clusters in intense femtosecond laser field

Zhang Chun-Yan, Zhao Qing, Fu Li-Bin, Liu Jie
PDF
导出引用
  • 利用LAMMPS程序研究了氢原子团簇在飞秒强激光场下的动力学行为, 讨论了引起小氢原子团簇各向异性膨胀的原因.通过对外电离过程中团簇内部电子的行为以及团簇各个方向上最外层质子距离团簇中心的距离随时间的变化情况的分析, 发现团簇的膨胀呈现各向异性,且引起这种各向异性的根源在于团簇内部电子的抖动以及逃逸.对氢原子团簇与强激光场相互作用过程中质子各能量分量以及各向异性程度随时间变化情况进行了研究,发现各向异性程度是随时间变化的, 这种各向异性程度首先随着激光电场的增强而增加,随后又逐渐减小,直到最后趋于某一大于1的稳定值.分析了激光脉冲结束后质子的平均能量与观测角之间的关系, 并将分析结果与Ditmire小组的实验结果进行了比较,发现我们的模拟结果在定性上与实验相符合.
    In this paper, a simulation discussing the cause inducing the anisotropy of hydrogen cluster expansion is implemented by using LAMMPS tool for the molecule dynamics simulations. Through analyzing the behavior of electrons contained in the cluster and the variations of distance between outermost protons of all directions and cluster center with time, we clearly find that the expansion of hydrogen cluster is anisotropic, which is due mainly to the anisotropies of the quiver and escaping of electrons. Then we study the evolutions of proton energy component and anisotropic degree, and find that the anisotropic degree first increases with laser electric field increasing, then decreases gradually to a stable value greater than one. Additionally, we analyze the relationship between observation angle and average proton energy from hydrogen cluster irradiated by ultreshort laser pulse, and find that our simulation results accord with the experimental results qualitatively.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2007CB921500, 2011CB921500)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2007CB921500, 2011CB921500).
    [1]

    Ditmire T, Smith R A, Tisch J W G, Hutchinson M H R 1997 Phys. Rev. Lett. 78 3121

    [2]

    Ditmire T, Donnelly T, Rubenchik A M, Falcone R W, Perry M D 1996 Phys. Rev. A 53 3379

    [3]

    Chen L M, Zhang J, Liang T J, Li Y T, Wang L, Jang W M 2000 Acta Phys. Sin. 49 529 (in Chinese) [陈黎明, 张杰, 梁天骄, 李玉同, 王龙, 江文勉 2000 49 529]

    [4]

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 094204 (in Chinese) [辛国国, 叶地发, 赵清, 刘杰 2011 60 094204]

    [5]

    Taguchi T M, Antonsen Jr T 2004 Phys. Rev. Lett. 92 205003

    [6]

    Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z 2006 Phys. Rev. A 74 023201

    [7]

    Ditmire T, Tisch J W G, Sprimpring E, Mason M B, Hay N, Smith R A, Marangos J, Hutchinson M H R 1997 Nature 386 54

    [8]

    Last I, Jorthner J 1999 Phys. Rev. A 60 2215

    [9]

    McPherson A, Luk T S, Thompson B D, Borisov A B, Shiryaev B, Chen X, Boyer K, Rhodes C K 1994 Phys. Rev. Lett. 72 1810

    [10]

    McPerson A, Thompson B D, Bofisov A B, Boyer K, Rhodes K 2001 Nature 370 631

    [11]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535

    [12]

    Velotta R, Hay N, Mason M B, Castillejo M, Marangos J P 2001 Phys. Rev. Lett. 87 183901

    [13]

    Ditmire T, Gtisch J W, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489

    [14]

    Last I, Jorthner J 2002 J. Phys. Chem. A 6 10877

    [15]

    Mendham K J, Hay N, Mason M B, Tisch J W G, Marangos J P 2001 Phys. Rev. A 64 055201

    [16]

    Dammasch M, Dörr M, Eichmann U, Lenz E, Sandner W 2001 Phys. Rev. A 64 061402

    [17]

    Li H Y, Liu J S 2010 Acta Phys. Sin. 59 7850 (in Chinese) [李红玉, 刘建胜 2010 59 7850]

    [18]

    Lebeault M A, Viallon J, Chevaleyre J, Ellert C, Normand D, Schmidt M, Sublemontier O, Guet C, Huber B 2002 Eur. Phys. J. D 20 233

    [19]

    Vozzi C, Nisoli M, Caumes J P, Sansone G, Stagira S, De-Silvestri S, Vecchiocattivi M, Bassi D, Pascolini M, Poletto L, Villoresi P, Tondello G 2005 Appl. Phys. Lett. 86 111121

    [20]

    Issac R C, Vieux G, Ersfeld B, Brunetti E, Jamison S P, Gallacher J, Clark D, Jaroszynski D A 2004 Phys. Plasmas 11 3491

    [21]

    Rozet J P, Cornille M, Dobosz S, Dubau J, Gauthier J C, Jacquemot S, Lamour E, Lezius M, Normand D, Schmidt M, Vernhet D 2001 Phys. Scr. T92 113

    [22]

    Kumarappan V, Krishnamurthy M 2001 Phys. Rev. Lett. 87 085005

    [23]

    Kumarappan V, Krishnamurthy M, Mathur D 2002 Phys. Rev. A 66 033203

    [24]

    Krishnamurthy M, Mathur D, Kumarappan V 2004 Phys. Rev. A 69 033202

    [25]

    Hirokane M, Shimizu S, Hashida M, Okada S, Okihara S, Sato F, Iida T, Sakabe S 2004 Phys. Rev. A 69 063201

    [26]

    Fennel T, Bertsch G F, Meiwes-Broer K H 2004 Eur. Phys. J. D 29 367

    [27]

    Jungreuthmayer C, Geissler M, Zanghellini J, Brabec T 2004 Phys. Rev. Lett. 92 133401

    [28]

    Symes D R, Hohenberger M, Henig A, Ditmire T 2007 Phys. Rev. Lett. 98 123401

    [29]

    Breizman B N, Arefiev A V, Fomyts'kyi M V 2005 Phys. Plasmas 12 056706

    [30]

    Sakabe S, Shimizu S, Hashida M, Sato F, Tsuyukushi T, Nishihara K, Okihara S, Kagawa T 2004 Phys. Rev. A 69 023203-1

    [31]

    Milchberg H M, McNaught S J, Parra E 2001 Phys. Rev. E 64 056402

    [32]

    Augst S, Meyerhofer D D, Strickland D, Chint S L 1991 J. Opt. Soc. Am. B 8 858

  • [1]

    Ditmire T, Smith R A, Tisch J W G, Hutchinson M H R 1997 Phys. Rev. Lett. 78 3121

    [2]

    Ditmire T, Donnelly T, Rubenchik A M, Falcone R W, Perry M D 1996 Phys. Rev. A 53 3379

    [3]

    Chen L M, Zhang J, Liang T J, Li Y T, Wang L, Jang W M 2000 Acta Phys. Sin. 49 529 (in Chinese) [陈黎明, 张杰, 梁天骄, 李玉同, 王龙, 江文勉 2000 49 529]

    [4]

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 094204 (in Chinese) [辛国国, 叶地发, 赵清, 刘杰 2011 60 094204]

    [5]

    Taguchi T M, Antonsen Jr T 2004 Phys. Rev. Lett. 92 205003

    [6]

    Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z 2006 Phys. Rev. A 74 023201

    [7]

    Ditmire T, Tisch J W G, Sprimpring E, Mason M B, Hay N, Smith R A, Marangos J, Hutchinson M H R 1997 Nature 386 54

    [8]

    Last I, Jorthner J 1999 Phys. Rev. A 60 2215

    [9]

    McPherson A, Luk T S, Thompson B D, Borisov A B, Shiryaev B, Chen X, Boyer K, Rhodes C K 1994 Phys. Rev. Lett. 72 1810

    [10]

    McPerson A, Thompson B D, Bofisov A B, Boyer K, Rhodes K 2001 Nature 370 631

    [11]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535

    [12]

    Velotta R, Hay N, Mason M B, Castillejo M, Marangos J P 2001 Phys. Rev. Lett. 87 183901

    [13]

    Ditmire T, Gtisch J W, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489

    [14]

    Last I, Jorthner J 2002 J. Phys. Chem. A 6 10877

    [15]

    Mendham K J, Hay N, Mason M B, Tisch J W G, Marangos J P 2001 Phys. Rev. A 64 055201

    [16]

    Dammasch M, Dörr M, Eichmann U, Lenz E, Sandner W 2001 Phys. Rev. A 64 061402

    [17]

    Li H Y, Liu J S 2010 Acta Phys. Sin. 59 7850 (in Chinese) [李红玉, 刘建胜 2010 59 7850]

    [18]

    Lebeault M A, Viallon J, Chevaleyre J, Ellert C, Normand D, Schmidt M, Sublemontier O, Guet C, Huber B 2002 Eur. Phys. J. D 20 233

    [19]

    Vozzi C, Nisoli M, Caumes J P, Sansone G, Stagira S, De-Silvestri S, Vecchiocattivi M, Bassi D, Pascolini M, Poletto L, Villoresi P, Tondello G 2005 Appl. Phys. Lett. 86 111121

    [20]

    Issac R C, Vieux G, Ersfeld B, Brunetti E, Jamison S P, Gallacher J, Clark D, Jaroszynski D A 2004 Phys. Plasmas 11 3491

    [21]

    Rozet J P, Cornille M, Dobosz S, Dubau J, Gauthier J C, Jacquemot S, Lamour E, Lezius M, Normand D, Schmidt M, Vernhet D 2001 Phys. Scr. T92 113

    [22]

    Kumarappan V, Krishnamurthy M 2001 Phys. Rev. Lett. 87 085005

    [23]

    Kumarappan V, Krishnamurthy M, Mathur D 2002 Phys. Rev. A 66 033203

    [24]

    Krishnamurthy M, Mathur D, Kumarappan V 2004 Phys. Rev. A 69 033202

    [25]

    Hirokane M, Shimizu S, Hashida M, Okada S, Okihara S, Sato F, Iida T, Sakabe S 2004 Phys. Rev. A 69 063201

    [26]

    Fennel T, Bertsch G F, Meiwes-Broer K H 2004 Eur. Phys. J. D 29 367

    [27]

    Jungreuthmayer C, Geissler M, Zanghellini J, Brabec T 2004 Phys. Rev. Lett. 92 133401

    [28]

    Symes D R, Hohenberger M, Henig A, Ditmire T 2007 Phys. Rev. Lett. 98 123401

    [29]

    Breizman B N, Arefiev A V, Fomyts'kyi M V 2005 Phys. Plasmas 12 056706

    [30]

    Sakabe S, Shimizu S, Hashida M, Sato F, Tsuyukushi T, Nishihara K, Okihara S, Kagawa T 2004 Phys. Rev. A 69 023203-1

    [31]

    Milchberg H M, McNaught S J, Parra E 2001 Phys. Rev. E 64 056402

    [32]

    Augst S, Meyerhofer D D, Strickland D, Chint S L 1991 J. Opt. Soc. Am. B 8 858

  • [1] 周晗, 耿轶钊, 晏世伟. p53活性四聚体全原子分子动力学分析.  , 2024, 73(4): 048701. doi: 10.7498/aps.73.20231515
    [2] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [3] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究.  , 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [4] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小.  , 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [5] 张春艳, 刘显明. 氢团簇在飞秒强激光场中的动力学行为.  , 2015, 64(16): 163601. doi: 10.7498/aps.64.163601
    [6] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究.  , 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [7] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究.  , 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [8] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响.  , 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [9] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟.  , 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [10] 颜超, 段军红, 何兴道. Ni原子倾斜轰击Pt(111)表面低能溅射现象的分子动力学模拟.  , 2011, 60(8): 088301. doi: 10.7498/aps.60.088301
    [11] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟.  , 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [12] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟.  , 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [13] 汪俊, 侯氢. 金属钛中氦团簇生长行为的分子动力学研究.  , 2009, 58(9): 6408-6412. doi: 10.7498/aps.58.6408
    [14] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟.  , 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [15] 周丽丽, 刘让苏, 侯兆阳, 田泽安, 林 艳, 刘全慧. 冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究.  , 2008, 57(6): 3653-3660. doi: 10.7498/aps.57.3653
    [16] 谢 朝, 侯 氢, 汪 俊, 孙铁英, 龙兴贵, 罗顺忠. 金属钛中氦团簇融合的分子动力学模拟.  , 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [17] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟.  , 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [18] 唐 鑫, 张 超, 张庆瑜. Cu(111)三维表面岛对表面原子扩散影响的分子动力学研究.  , 2005, 54(12): 5797-5803. doi: 10.7498/aps.54.5797
    [19] 王 音, 李 鹏, 宁西京. C36团簇自组装的分子动力学研究.  , 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [20] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟.  , 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
计量
  • 文章访问数:  7416
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-11
  • 修回日期:  2011-11-30
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map