-
Mechanical response of mixtures composed of glass and rubber particles are investigated in direct shear experiments in laboratory and by means of discrete element method simulations. The mixtures are prepared with different contents of rubber fractions. It is found that, with increasing rubber particles, volume phase transition occurs from dilatancy to reduction, and the elastic properties of the mixtures are improved. Experimental results show that, as the rubber particles (up to 30% in volume) are added, the value of the shear stress falls, and the volume phase transition occurs, but the critical states are the same. The shear stress is independent of shear rates, however, it grows with the normal force. We have obtained the consistent results in the simulation. Furthermore, statistical analysis of the simulation results shows that the average coordination number is raised with the increase of rubber particles. Volume phase transition occurs at low rubber fraction when the normal force is large. It is very important to keep in mind that the average coordination number is always between 5.6 and 5.9 at the phase transition points even under different normal forces. When the rubber fraction is less than 30%, the residual shear strength is nearly the same as in the system of glass beads. However, the residual shear strength decreases when the rubber particles increase to the fraction larger than 30%. Meanwhile, the residual shear strength increases with the normal pressure.
-
Keywords:
- granular systems /
- direct shear /
- granular mixtures /
- discrete element method
[1] Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版社) 第73页]
[2] Specht L P, Khatchatourian O, Brito L A T, Ceratti J A P 2007 Materials Research 10 69
[3] Zornberg J G, Cabral A R, Virajandr C 2004 Canadian Geotichnical Journal 41 227
[4] Valdes J R, Evans T M 2008 Canadian Geotechnical Jouirnal 45 588
[5] Feng Z Y, Sutter K G 2000 Geotechnical Testing Journal 23 338
[6] Lee Changho, Truong Q H, Lee W, Lee J S 2010 Journal of Materials in Civil Engineering 22 323
[7] Lee J S, Dodds J, Santamarina J C 2007 Journal of Materials in Civil Engineering 19 197
[8] Kim H K, Santamarina J C 2008 Canadian Geotechnical Jouirnal 45 1457
[9] Lee C, Shin H, Lee J S 2014 International Journal for Numerical and Analytical Methods in Geomechanics 38 1651
[10] Khidas Y, Jia X 2012 Physical Review E 85 051302
[11] Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Physical Review E 85 031306
[12] Zhang Q 2012 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [张祺 2012 博士学位论文(武汉: 武汉大学)]
[13] Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese) [张祺, 厚美瑛 2012 61 234501]
[14] Sezer A, Altun S, Goktepe B A 2011 Soils and Foundations 51 857
[15] Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 61 244504]
[16] Wang J, Gutierrez M 2010 Geotechnique 60 395
[17] Liu H T, Cheng X H 2009 Rock and Soil Mechanics 30 287 (in Chinese) [刘海涛, 程晓辉 2009 岩土力学 30 287]
[18] Brujić J, Wang P, Song C M, Johnson D, Sindt O, Makse H 2005 Physical Review Letters 95 128001
[19] Luding S 2008 Granular Matter 10 235
[20] Luding S 2004 International Journal of Solids and Structures 41 5821
[21] Luding S 2005 Journal of the Mechanics and Physics of Solids 53 455
[22] Luding S 2005 Powder Technology 158 45
[23] Zhao C, Hou M Y, Hu L 2014 Chinese Journal of Computational Mechanics 31 179 (in Chinese) [赵闯, 厚美瑛, 胡林 2014 计算力学学报 31 179]
-
[1] Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版社) 第73页]
[2] Specht L P, Khatchatourian O, Brito L A T, Ceratti J A P 2007 Materials Research 10 69
[3] Zornberg J G, Cabral A R, Virajandr C 2004 Canadian Geotichnical Journal 41 227
[4] Valdes J R, Evans T M 2008 Canadian Geotechnical Jouirnal 45 588
[5] Feng Z Y, Sutter K G 2000 Geotechnical Testing Journal 23 338
[6] Lee Changho, Truong Q H, Lee W, Lee J S 2010 Journal of Materials in Civil Engineering 22 323
[7] Lee J S, Dodds J, Santamarina J C 2007 Journal of Materials in Civil Engineering 19 197
[8] Kim H K, Santamarina J C 2008 Canadian Geotechnical Jouirnal 45 1457
[9] Lee C, Shin H, Lee J S 2014 International Journal for Numerical and Analytical Methods in Geomechanics 38 1651
[10] Khidas Y, Jia X 2012 Physical Review E 85 051302
[11] Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Physical Review E 85 031306
[12] Zhang Q 2012 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [张祺 2012 博士学位论文(武汉: 武汉大学)]
[13] Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese) [张祺, 厚美瑛 2012 61 234501]
[14] Sezer A, Altun S, Goktepe B A 2011 Soils and Foundations 51 857
[15] Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 61 244504]
[16] Wang J, Gutierrez M 2010 Geotechnique 60 395
[17] Liu H T, Cheng X H 2009 Rock and Soil Mechanics 30 287 (in Chinese) [刘海涛, 程晓辉 2009 岩土力学 30 287]
[18] Brujić J, Wang P, Song C M, Johnson D, Sindt O, Makse H 2005 Physical Review Letters 95 128001
[19] Luding S 2008 Granular Matter 10 235
[20] Luding S 2004 International Journal of Solids and Structures 41 5821
[21] Luding S 2005 Journal of the Mechanics and Physics of Solids 53 455
[22] Luding S 2005 Powder Technology 158 45
[23] Zhao C, Hou M Y, Hu L 2014 Chinese Journal of Computational Mechanics 31 179 (in Chinese) [赵闯, 厚美瑛, 胡林 2014 计算力学学报 31 179]
Catalog
Metrics
- Abstract views: 5610
- PDF Downloads: 197
- Cited By: 0