Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Complex background model and foreground detection based on random aggregation

Bi Guo-Ling Xu Zhi-Jun Chen Tao Wang Jian-Li Zhang Yan-Kun

Citation:

Complex background model and foreground detection based on random aggregation

Bi Guo-Ling, Xu Zhi-Jun, Chen Tao, Wang Jian-Li, Zhang Yan-Kun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to build a robust background model and improve the accuracy of the foreground object detection, we give a comprehensive consideration on the same location pixels of the relevance of time and the correlation of space with its adjacent pixels; and based on the classic ViBe of random algorithm ideas, a kind of complex background model and foreground detection method is proposed. Using the first n series of images to initialize the background model with the sample consistency principle, we can avoid the appearance of the “Ghost” phenomenon; and get the difference between each pixel and its multiple sample value in the background model, and then compute the sum and the average. The average shows the dynamic degree of the background point which is the corresponding pixel background of dynamic feedback information. We get the adaptive clustering threshold and adaptive updating threshold with the dynamic feedback to make random clusters realize the adaptability to dynamic background and combine the global disturbance threshold with the local pixel level judgment threshold to implement the immunity of illumination with slow changes, fast changes or sudden changes, so that we can segment the prospect target accurately. By selecting neighborhood pixels to update the neighborhood background randomly in terms of spatial information dissemination mechanism, a good detection effect is obtained in the case of camera shake. Through multiple sets of test data, experimental results show that this algorithm can significantly improve the adaptability and robustness of the background model such as dynamic backgrounds, illumination changes, and camera shake. The algorithm can well apply to the occasion of moving targets in infrared image detection, and expand its application range. Without any image preprocessing and morphological post-processing, the original detection accuracy of foreground is superior to other algorithms.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2012ZX04001-011), and the National Natural Science Foundation of China (Grant No. 60977001).
    [1]

    Barron J, Fleet D 1994 Int. J. Comp. Vis. 12 42

    [2]

    Meier T, Ngun K N 1999 IEEE Trans. Circuits Sys. Video Techn. 9 1190

    [3]

    Fujiyoshi H, Lipton A 1998 Proc. IEEE 98 15

    [4]

    Chen X M, Liao J, Li B, Chen Q M 2014 Optics and Precision Engineering 22 2545 (in Chinese) [陈星明, 廖娟, 李勃, 陈启美 2014 光学精密工程 22 2545]

    [5]

    Zhao X D, Liu P, Tang X L, Liu J F 2011 Acta Automatica Sinica 37 915 (in Chinese) [赵旭东, 刘鹏, 唐降龙, 刘家锋 2011 自动化学报 37 915]

    [6]

    He S H, Yang S Q, Shi A G, Li T W 2009 Chin. Phys. Sin. 58 794 (in Chinese) [何四华, 杨绍清, 石爱国, 李天伟 2009 58 794]

    [7]

    Jin Z L, Han J, Zhang Y, Bai L F 2014 Chin. Phys Sin. 63 069501 (in Chinese) [金左轮, 韩静, 张毅, 柏连发 2014 63 069501]

    [8]

    Xing H Y, Qi Z D, Xu W 2012 Chin. Phys Sin. 61 240504 (in Chinese) [行鸿彦, 祁峥东, 徐伟 2012 61 240504]

    [9]

    Zivkovic Z 2004 Proceedings of the 17th International Conference on IEEE, August 23-26, 2004 p28

    [10]

    Maddalena L, Petrosino A 2008 IEEE Transactions on Image Processing 17 1168

    [11]

    Kim K, Chalidabhongse T H, Harwood D 2005 Realtime Imaging 11 172

    [12]

    Godbehere A B, Matsukawa A, Goldberg K 2012 American Control Conference (ACC) on Montreal, QC, June 27-29 2012 p4305

    [13]

    Wang H Z, David S 2006 Proceedings of the 18th International Conference on Pattern Recognition Hong Kong, August 2-6, 2006 p223

    [14]

    Barnich O, Van Droogenbroeck M 2011 Image Processing, IEEE 20 1709

    [15]

    YU Y, Cao M W, Yue F 2014 Chinese Journal of Scientific Instrument 35 924 (in Chinese) [余烨, 曹明伟, 岳峰 2014 仪器仪表学报 35 924]

    [16]

    Su Y Z, Li A H, Jiang K, Jin G Z 2014 Journal of Computer-Aided Design & Computer Graphics 26 232 (in Chinese) [苏延召, 李艾华, 姜柯, 金广智 2014 计算机辅助设计与图形学学报 26 232]

    [17]

    Yuan H Z, Li G, Yang J, Gao Z S 2012 Journal of Sichuan University 44 156 (in Chinese) [袁红照, 李纲, 杨军, 高志升 2012 四川大学学报 44 156]

    [18]

    Li X, Xu G L, Cheng Y H, Wang B, Tian Y P, Li K Y 2014 Jisuanji Yu Xiandaihua 3 89 (in Chinese) [李旭, 徐贵力, 程月华, 王彪, 田裕鹏, 李开宇 2014 计算机与现代化 3 89]

    [19]

    Goyette N, Jodoin P, Porikli F 2012 Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Providence, RI, June 16-21, 2012 p1

  • [1]

    Barron J, Fleet D 1994 Int. J. Comp. Vis. 12 42

    [2]

    Meier T, Ngun K N 1999 IEEE Trans. Circuits Sys. Video Techn. 9 1190

    [3]

    Fujiyoshi H, Lipton A 1998 Proc. IEEE 98 15

    [4]

    Chen X M, Liao J, Li B, Chen Q M 2014 Optics and Precision Engineering 22 2545 (in Chinese) [陈星明, 廖娟, 李勃, 陈启美 2014 光学精密工程 22 2545]

    [5]

    Zhao X D, Liu P, Tang X L, Liu J F 2011 Acta Automatica Sinica 37 915 (in Chinese) [赵旭东, 刘鹏, 唐降龙, 刘家锋 2011 自动化学报 37 915]

    [6]

    He S H, Yang S Q, Shi A G, Li T W 2009 Chin. Phys. Sin. 58 794 (in Chinese) [何四华, 杨绍清, 石爱国, 李天伟 2009 58 794]

    [7]

    Jin Z L, Han J, Zhang Y, Bai L F 2014 Chin. Phys Sin. 63 069501 (in Chinese) [金左轮, 韩静, 张毅, 柏连发 2014 63 069501]

    [8]

    Xing H Y, Qi Z D, Xu W 2012 Chin. Phys Sin. 61 240504 (in Chinese) [行鸿彦, 祁峥东, 徐伟 2012 61 240504]

    [9]

    Zivkovic Z 2004 Proceedings of the 17th International Conference on IEEE, August 23-26, 2004 p28

    [10]

    Maddalena L, Petrosino A 2008 IEEE Transactions on Image Processing 17 1168

    [11]

    Kim K, Chalidabhongse T H, Harwood D 2005 Realtime Imaging 11 172

    [12]

    Godbehere A B, Matsukawa A, Goldberg K 2012 American Control Conference (ACC) on Montreal, QC, June 27-29 2012 p4305

    [13]

    Wang H Z, David S 2006 Proceedings of the 18th International Conference on Pattern Recognition Hong Kong, August 2-6, 2006 p223

    [14]

    Barnich O, Van Droogenbroeck M 2011 Image Processing, IEEE 20 1709

    [15]

    YU Y, Cao M W, Yue F 2014 Chinese Journal of Scientific Instrument 35 924 (in Chinese) [余烨, 曹明伟, 岳峰 2014 仪器仪表学报 35 924]

    [16]

    Su Y Z, Li A H, Jiang K, Jin G Z 2014 Journal of Computer-Aided Design & Computer Graphics 26 232 (in Chinese) [苏延召, 李艾华, 姜柯, 金广智 2014 计算机辅助设计与图形学学报 26 232]

    [17]

    Yuan H Z, Li G, Yang J, Gao Z S 2012 Journal of Sichuan University 44 156 (in Chinese) [袁红照, 李纲, 杨军, 高志升 2012 四川大学学报 44 156]

    [18]

    Li X, Xu G L, Cheng Y H, Wang B, Tian Y P, Li K Y 2014 Jisuanji Yu Xiandaihua 3 89 (in Chinese) [李旭, 徐贵力, 程月华, 王彪, 田裕鹏, 李开宇 2014 计算机与现代化 3 89]

    [19]

    Goyette N, Jodoin P, Porikli F 2012 Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Providence, RI, June 16-21, 2012 p1

  • [1] Xu Yan, Wang Pei-Guang, Yang Qing, Dong Jiang-Tao. Moving target detection algorithm based on spatiotemporal correlation multi-channel clustering. Acta Physica Sinica, 2019, 68(16): 164203. doi: 10.7498/aps.68.20190161
    [2] Cui Zhi-Gao, Wang Hua, Li Ai-Hua, Wang Tao, Li Hui. Moving object detection based on optical flow field analysis in dynamic scenes. Acta Physica Sinica, 2017, 66(8): 084203. doi: 10.7498/aps.66.084203
    [3] Su Li-Yun, Sun Huan-Huan, Wang Jie, Yang Li-Ming. Detection and estimation of weak pulse signal in chaotic background noise. Acta Physica Sinica, 2017, 66(9): 090503. doi: 10.7498/aps.66.090503
    [4] Zhao Xin-Wei, Jin Tao, Chi Hao, Qu Song. Modeling and simulation of the background light in underwater imaging under different illumination conditions. Acta Physica Sinica, 2015, 64(10): 104201. doi: 10.7498/aps.64.104201
    [5] Hu Jin-Feng, Zhang Ya-Xuan, Li Hui-Yong, Yang Miao, Xia Wei, Li Jun. Harmonic signal detection method from strong chaotic background based on optimal filter. Acta Physica Sinica, 2015, 64(22): 220504. doi: 10.7498/aps.64.220504
    [6] Xing Hong-Yan, Zhang Qiang, Xu Wei. Hybrid algorithm for weak signal detection in chaotic sea clutter. Acta Physica Sinica, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [7] Xing Hong-Yan, Zhu Qing-Qing, Xu Wei. A method of weak target detection based on the sea clutter. Acta Physica Sinica, 2014, 63(10): 100505. doi: 10.7498/aps.63.100505
    [8] Gao Wen, Tang Yang, Zhu Ming. Study on the cascade classifier in target detection under complex background. Acta Physica Sinica, 2014, 63(9): 094204. doi: 10.7498/aps.63.094204
    [9] Xing Hong-Yan, Cheng Yan-Yan, Xu Wei. Detection of weak target signal with least-squares support vector machine and generalized embedding windows under chaotic background. Acta Physica Sinica, 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [10] Gao Shi-Long, Zhong Su-Chuan, Wei Kun, Ma Hong. Weak signal detection based on chaos and stochastic resonance. Acta Physica Sinica, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [11] Xing HongYan, Qi ZhengDong, Xu Wei. Weak signal estimation in chaotic clutter using selective support vector machine ensemble. Acta Physica Sinica, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [12] Xing Hong-Yan, Gong Ping, Xu Wei. Small target detection in the background of sea clutter using fractal method. Acta Physica Sinica, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [13] Wang Dan, Jin Xiao-Zheng. On weightd scale-free network model with tunable clustering and congesstion. Acta Physica Sinica, 2012, 61(22): 228901. doi: 10.7498/aps.61.228901
    [14] Yuan Yan, Sun Cheng-Ming, Huang Feng-Zhen, Zhao Hui-Jie, Wang Qian. Modeling of ultraviolet characteristics of deep space target. Acta Physica Sinica, 2011, 60(8): 089501. doi: 10.7498/aps.60.089501
    [15] Xing Hong-Yan, Jin Tian-Li. Weak signal estimation in chaotic clutter using wavelet analysis and symmetric LS-SVM regression. Acta Physica Sinica, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [16] Sun Cheng-Ming, Yuan Yan, Zhang Xiu-Bao. Modeling of infrared characteristics of deep space target. Acta Physica Sinica, 2010, 59(10): 7523-7530. doi: 10.7498/aps.59.7523
    [17] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [18] Jiang Bin, Wang Hong-Qiang, Li Xiang, Guo Gui-Rong. A novel method of target detection based on the sea clutter. Acta Physica Sinica, 2006, 55(8): 3985-3991. doi: 10.7498/aps.55.3985
    [19] Li Yue, Lu Peng, Yang Bao-Jun, Zhao Xue-Ping. Applying a special kind of two coupled Duffing oscillator system to detect periodic signals under the background of strong colored noise. Acta Physica Sinica, 2006, 55(4): 1672-1677. doi: 10.7498/aps.55.1672
    [20] Li Yue, Yang Bao-Jun, Shi Yao-Wu. Chaos-based weak sinusoidal signal detection approach under colored noise background. Acta Physica Sinica, 2003, 52(3): 526-530. doi: 10.7498/aps.52.526
Metrics
  • Abstract views:  6326
  • PDF Downloads:  309
  • Cited By: 0
Publishing process
  • Received Date:  06 February 2015
  • Accepted Date:  19 March 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map