-
Measuring the vibration dephasing time in molecular vibration is the free-mark method for detecting molecules harmlessly. Since molecular vibration refund processes are associated with molecular environment change, molecular vibration dephasing time also may reflect the substance's molecular environment change, which can be used to study the interaction between a certain molecule and its neighboring molecules. The molecular vibration spectrum and vibration dephasing time are obtained from the time-resolved coherent anti-stokes Raman scattering (CARS) simultaneously. Benzonitrile and methanol are used as samples for studying, the vibration dephasing time changes for the main vibration spectra when the environment changes. With benzonitrile mixed with anhydrous alcohol, its vibration dephasing time changes with environment are measured in three typical benzonitrile molecular vibrations 1017 cm-1, 2247 cm-1 and 3085 cm-1. For adjoining methanol molecular vibrations 2851 cm-1, and 2960 cm-1, vibration dephasing time changes are measured under environmental conditions. Results show that significant changes of molecular vibration dephasing time will take place in different environments. For a unidirectional molecular environment change, the molecular vibration dephasing time of benzonitrile is a one-way change, while the methanol molecule is of non-unidirectional vibration dephasing time change. But methanol molecules with vibration intensity ratios between two unidirectional changes with environment for I2851/I2960 are of a one-way change. By experimental measurement the vibration dephasing time of the main vibration mode of benzonitrile and methanol molecules varies with the changes in the environment, further understanding of differences on vibration dephasing time of molecular vibration spectra of adjacent and non-adjacent variations can explain the variation of vibration dephasing time of benzonitrile molecules. This method has the ability of detecting molecular environment change and molecular interactions, and has an important application prospect in the field of life science, molecular biology, and material science etc..
-
Keywords:
- coherent anti-Stokes Raman scattering /
- vibrational dephasing time /
- time-resolved method /
- molecular vibrational spectrum
[1] Pigliucci A, Duvanel G, Daku I M, Vauthey E 2007 J. Phys. Chem. 111 6135
[2] Volker A, Book I D, Xie X S 2002 Appl. Phys. Lett. 80 1505
[3] Dmitry P, Zhi M C, Zoe-Elizabeth S, Nikolai G K, Alexander K, Robert M, Yuri V R, Vladimir A S, Alexei V S, Marlan O S 2006 J. Raman Spectrosc. 37 392
[4] Yeremenko S, Pshenichnikov M S, Wiersma D A 2003 Chem. Phys. Lett. 369 107
[5] Watanabe D, Hamaguchi H 2005 J. Chem. Phys. 123 034508
[6] Bartoli F J, Litovitz T A 1972 J. Phys. Chem. 56 404
[7] Schmitt M, Knopp G, Materny A, Kiefer W 1997 Chem. Phys. Lett. 270 9
[8] Roy S, Richardson D, Kinnius P J, Lucht R P, Gord J R 2009 Appl. Phys. Lett. 94 144101
[9] Yu L Y, Yin J, Wan H, Liu X, Qu J L, Niu H B, Lin Z Y 2010 Acta Phys. Sin. 59 5406 (in Chinese) [于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬 2010 59 5406]
[10] Yin J, Yu F, Hou G H, Liang R F, Tian Y L, Lin Z Y, Niu H B 2014 Acta Phys. Sin. 63 073301 (in Chinese) [尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨 2014 63 073301]
[11] Yin J, Yu L Y, Liu X, Wan H, Lin Z Y, Niu H B 2011 Chin. Phys. B 20 014206
[12] Wan H, Yin J, Yu L Y, Liu X, Qu J L, Lin Z Y, Niu H B 2011 Spectrosc. Spectr. Anal. 31 314 (in Chinese) [万辉, 尹君, 于凌尧, 刘星, 屈军乐, 林子扬, 牛憨笨 2011 光谱学与光谱分析 31 314]
[13] Hamaguchi H, Gustafson T L 1994 Annu. Rev. Phys. Chem. 45 593
[14] Hubble H W, Lai T S, Berg M A 2001 J. Chem. Phys. 114 3662
[15] Pestov D, Zhi M, Sariyanni Z E, Kalugin N G, Kolomenskii A, Murawski R, Rostovtsev Y V, Sautenkov V A, Sokolov A V, Scully M O 2006 J. Raman Spectresc. 37 392
[16] Dougan L, Bates S P, Hargreaves R, Fox J P, Crain J, Finney J L, Reat V, Soper A K 2004 J. Chem. Phys. 121 6456
-
[1] Pigliucci A, Duvanel G, Daku I M, Vauthey E 2007 J. Phys. Chem. 111 6135
[2] Volker A, Book I D, Xie X S 2002 Appl. Phys. Lett. 80 1505
[3] Dmitry P, Zhi M C, Zoe-Elizabeth S, Nikolai G K, Alexander K, Robert M, Yuri V R, Vladimir A S, Alexei V S, Marlan O S 2006 J. Raman Spectrosc. 37 392
[4] Yeremenko S, Pshenichnikov M S, Wiersma D A 2003 Chem. Phys. Lett. 369 107
[5] Watanabe D, Hamaguchi H 2005 J. Chem. Phys. 123 034508
[6] Bartoli F J, Litovitz T A 1972 J. Phys. Chem. 56 404
[7] Schmitt M, Knopp G, Materny A, Kiefer W 1997 Chem. Phys. Lett. 270 9
[8] Roy S, Richardson D, Kinnius P J, Lucht R P, Gord J R 2009 Appl. Phys. Lett. 94 144101
[9] Yu L Y, Yin J, Wan H, Liu X, Qu J L, Niu H B, Lin Z Y 2010 Acta Phys. Sin. 59 5406 (in Chinese) [于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬 2010 59 5406]
[10] Yin J, Yu F, Hou G H, Liang R F, Tian Y L, Lin Z Y, Niu H B 2014 Acta Phys. Sin. 63 073301 (in Chinese) [尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨 2014 63 073301]
[11] Yin J, Yu L Y, Liu X, Wan H, Lin Z Y, Niu H B 2011 Chin. Phys. B 20 014206
[12] Wan H, Yin J, Yu L Y, Liu X, Qu J L, Lin Z Y, Niu H B 2011 Spectrosc. Spectr. Anal. 31 314 (in Chinese) [万辉, 尹君, 于凌尧, 刘星, 屈军乐, 林子扬, 牛憨笨 2011 光谱学与光谱分析 31 314]
[13] Hamaguchi H, Gustafson T L 1994 Annu. Rev. Phys. Chem. 45 593
[14] Hubble H W, Lai T S, Berg M A 2001 J. Chem. Phys. 114 3662
[15] Pestov D, Zhi M, Sariyanni Z E, Kalugin N G, Kolomenskii A, Murawski R, Rostovtsev Y V, Sautenkov V A, Sokolov A V, Scully M O 2006 J. Raman Spectresc. 37 392
[16] Dougan L, Bates S P, Hargreaves R, Fox J P, Crain J, Finney J L, Reat V, Soper A K 2004 J. Chem. Phys. 121 6456
Catalog
Metrics
- Abstract views: 6091
- PDF Downloads: 157
- Cited By: 0