搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无旋性前进重力波传递在均匀流中的Lagrange解析解与试验验证Ⅰ.理论解析解

陈阳益 许弘莒 张宪国

引用本文:
Citation:

无旋性前进重力波传递在均匀流中的Lagrange解析解与试验验证Ⅰ.理论解析解

陈阳益, 许弘莒, 张宪国

The irrotational progressive gravity waves propagating on uniform currents in Lagrangian analysis and experiments Part 1. Theoretical analysis

Chen Yang-Yih, Hsu Hung-Chu, Chang Hsien-Kuo
PDF
导出引用
  • 对于三维空间等深水中,无旋性自由表面周期性规则前进重力波传递在均匀流中的波流场,依质量守恒取一波长的流体质点的运动位移的波长平均高程,所得其标注参数恰为其在原静止水中的位置下,完全以Lagrange方式的参数控制式,解出此波流场至第三阶的全Lagrange形式解且得到检核验证;其中波流交互作用效应存在于Lagrange流速势中,使得波流场中的压力不受均匀流的影响.而Euler形式解所无法描述的流场特性,包括大于前进波周期的流体质点的运动周期,与其受前进波引起的质量传输速度、它们间的关系、及流体质点对其运动周期平均的高程与成因等,都说明是随流体质点所在的高程向下做指数函数样递减;而流体质点的三维空间螺旋曲线式的运动轨迹与烟线,其随均匀流的流向流速而变化的情况,例如其在均匀流于前进波波向有同向的流速分量时,是受流体质点恰在波谷断面处时的流速大小而变的形式,与其在均匀流于前进波波向有反向的流速分量时,则受流体质点恰在波峰断面处时的流速大小而变的形式,有很大不同的倒反形式甚至以封闭曲线形式呈现.最后,说明波流场变成稳定性运动流场时的特性,并证实其在无流时退化成纯前进波的情况.
    A third-order Lagrangian solutions is found directly by the full Lagrangian parametric governing equations, with the parameters of identifying each water particle which is obtained in mass conservation from taking the wavelength-averaged level of the vertical displacement of water particles along the direction of the wave propagation and is just the position of particle in the original still water, for the irrotational free surface progressive gravity waves propagating on uniform current in the three dimension. It is found that the effect of wave-current interaction is occurred in Lagrangian velocity potential, so that the pressure is not affected by the uniform current in the wave-current field. The drift velocity, Lagrangian mean level of particle and its motion period longer than the wave period which are exponentially decreasing with the depth of particle's level and the pathlines of particle and the streakline are then all presented, these are to be excluded in Eulerian solution. Furthermore, the forms of the helical pathlines of particles varying with the direction and speed of the uniform current are appeared to be turned from the wave velocity and current velocity component in co-direction to in anti-direction, even become into a closed orbit. The special case when the wave-current field is at the steady motion is also interpreted its consequential charateristics. The present solution can be reduced to that of the pure progressive waves as no current exists.
    [1]

    Longuet-Higgins M S, Stewart R W 1960 J. Fluid Mech. 8 565

    [2]

    Longuet-Higgins M S, Stewart R W 1961 J. Fluid Mech. 10 529

    [3]

    Jonsson I G, Skougaard C, Wang J D 1970 Proc. 12th Coastal Eng. Conf.(New York: ASCE)1 489

    [4]

    Jonsson I G 1978 J. Hydraul. Res. 16(3)223

    [5]

    Jonsson I G, Brink-Kjaer O, Thomas G P 1978 J. Fluid Mech. 87 401

    [6]

    Peregrine D H 1976 Adv. Appl. Mech. 16 9

    [7]

    Thomas G P 1981 J. Fluid Mech. 110 457

    [8]

    Thomas G P 1990 J. Fluid Mech. 216 505

    [9]

    Chen Y Y, Juang W J 1990 Proceeding of the 12th Ocean Engineering Conference in Taiwan(Taiwan: The Taiwan Society of Ocean Engineering)p248(in Chinese)[陈阳益, 庄文杰 1990 第十二届海洋工程研讨会论文集(台湾:台湾海洋工程学会)第248页]

    [10]

    Baddour R E, Song S W 1990 Ocean Engng. 17 551

    [11]

    Chang H K, Chen Y Y 1993 Harbour Technology 8 24(in Chinese)[张宪国, 陈阳益 1993 港湾技术 8 24]

    [12]

    Groeneweg J, Battjes J 2003 J. Fluid Mech. 478 325

    [13]

    Musumeci R E, Cavallo L, Foti E, Scandura P 2006 J. Geophys. Res. 111 c07019

    [14]

    Olabarrieta M, Medina P, Castanedo S 2010 Coastal Engineering 57 643

    [15]

    Hsu H C, Chen Y Y, Li M S, Tseng W J 2009 Acta Oceanol. Sin. 28 89

    [16]

    Chen Y Y, Hsu H C 2005 Proceeding of the 27th Ocean Engineering Conference in Taiwan.(The Taiwan Society of Ocean Engineering)p63(in Chinese)[陈阳益, 许弘莒 2005 第二十七届海洋工程研讨会论文集(台湾:台湾海洋工程学会)第63页]

    [17]

    Chen Y Y, Hsu H C 2009a Acta Physica Sinica 58 40(in Chinese)[陈阳益, 许弘莒 2009a 58 40]

    [18]

    Chen Y Y, Hsu H C 2009b Acta Physica Sinica 58 3657 [陈阳益, 许弘莒 2009b 58 3637]

    [19]

    Chen Y Y, Hsu H C 2009 Ocean Engineering 36 747

    [20]

    Chen Y Y 1994a Proceeding of the 12th Ocean Engineering Conference in Taiwan(Taiwan: The Taiwan Society of Ocean Engineering)A1(in Chinese)[陈阳益 1994a 第十六届海洋工程研讨会论文集(台湾:台湾海洋工程学会)A1]

    [21]

    Chen Y Y 1994b Proceeding of the 12th Ocean Engineering Conference in Taiwan.(The Taiwan society of Ocean Engineering.)(in Chinese)A30 [陈阳益 1994b 第十六届海洋工程研讨会论文集(台湾:台湾海洋工程学会)A30]

    [22]

    Chen Y Y, Hsu H C 2009d China Physics B 18 1

    [23]

    Chen Y Y, Hsu H C, Chen G Y 2010 Fluid Dyn. Res. 42 1

    [24]

    Lamb H 1932 Hydrodynamics(6th Ed.)(London: Cambridge University Press)

    [25]

    Pierson W J 1962 J. Geophy. Res. 67 3151

    [26]

    Fenton J D 1985 J. Waterways Port Coastal Ocean Eng. 3 216

    [27]

    Longuet-Higgins M S 1987 J. Fluid Mech. 179 547

    [28]

    Longuet-Higgins M S 1986 J. Fluid Mech. 173 683

  • [1]

    Longuet-Higgins M S, Stewart R W 1960 J. Fluid Mech. 8 565

    [2]

    Longuet-Higgins M S, Stewart R W 1961 J. Fluid Mech. 10 529

    [3]

    Jonsson I G, Skougaard C, Wang J D 1970 Proc. 12th Coastal Eng. Conf.(New York: ASCE)1 489

    [4]

    Jonsson I G 1978 J. Hydraul. Res. 16(3)223

    [5]

    Jonsson I G, Brink-Kjaer O, Thomas G P 1978 J. Fluid Mech. 87 401

    [6]

    Peregrine D H 1976 Adv. Appl. Mech. 16 9

    [7]

    Thomas G P 1981 J. Fluid Mech. 110 457

    [8]

    Thomas G P 1990 J. Fluid Mech. 216 505

    [9]

    Chen Y Y, Juang W J 1990 Proceeding of the 12th Ocean Engineering Conference in Taiwan(Taiwan: The Taiwan Society of Ocean Engineering)p248(in Chinese)[陈阳益, 庄文杰 1990 第十二届海洋工程研讨会论文集(台湾:台湾海洋工程学会)第248页]

    [10]

    Baddour R E, Song S W 1990 Ocean Engng. 17 551

    [11]

    Chang H K, Chen Y Y 1993 Harbour Technology 8 24(in Chinese)[张宪国, 陈阳益 1993 港湾技术 8 24]

    [12]

    Groeneweg J, Battjes J 2003 J. Fluid Mech. 478 325

    [13]

    Musumeci R E, Cavallo L, Foti E, Scandura P 2006 J. Geophys. Res. 111 c07019

    [14]

    Olabarrieta M, Medina P, Castanedo S 2010 Coastal Engineering 57 643

    [15]

    Hsu H C, Chen Y Y, Li M S, Tseng W J 2009 Acta Oceanol. Sin. 28 89

    [16]

    Chen Y Y, Hsu H C 2005 Proceeding of the 27th Ocean Engineering Conference in Taiwan.(The Taiwan Society of Ocean Engineering)p63(in Chinese)[陈阳益, 许弘莒 2005 第二十七届海洋工程研讨会论文集(台湾:台湾海洋工程学会)第63页]

    [17]

    Chen Y Y, Hsu H C 2009a Acta Physica Sinica 58 40(in Chinese)[陈阳益, 许弘莒 2009a 58 40]

    [18]

    Chen Y Y, Hsu H C 2009b Acta Physica Sinica 58 3657 [陈阳益, 许弘莒 2009b 58 3637]

    [19]

    Chen Y Y, Hsu H C 2009 Ocean Engineering 36 747

    [20]

    Chen Y Y 1994a Proceeding of the 12th Ocean Engineering Conference in Taiwan(Taiwan: The Taiwan Society of Ocean Engineering)A1(in Chinese)[陈阳益 1994a 第十六届海洋工程研讨会论文集(台湾:台湾海洋工程学会)A1]

    [21]

    Chen Y Y 1994b Proceeding of the 12th Ocean Engineering Conference in Taiwan.(The Taiwan society of Ocean Engineering.)(in Chinese)A30 [陈阳益 1994b 第十六届海洋工程研讨会论文集(台湾:台湾海洋工程学会)A30]

    [22]

    Chen Y Y, Hsu H C 2009d China Physics B 18 1

    [23]

    Chen Y Y, Hsu H C, Chen G Y 2010 Fluid Dyn. Res. 42 1

    [24]

    Lamb H 1932 Hydrodynamics(6th Ed.)(London: Cambridge University Press)

    [25]

    Pierson W J 1962 J. Geophy. Res. 67 3151

    [26]

    Fenton J D 1985 J. Waterways Port Coastal Ocean Eng. 3 216

    [27]

    Longuet-Higgins M S 1987 J. Fluid Mech. 179 547

    [28]

    Longuet-Higgins M S 1986 J. Fluid Mech. 173 683

  • [1] 张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟.  , 2023, 72(1): 013701. doi: 10.7498/aps.72.20221674
    [2] 王延娜, 赵迪, 方爱平, 蒋臣威, 高韶燕, 李福利. 利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹.  , 2015, 64(22): 224214. doi: 10.7498/aps.64.224214
    [3] 陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽. 使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构.  , 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [4] 陈丽娟, 鲁世平. 地球磁层电磁场中粒子引导中心漂移运动模型的周期轨.  , 2014, 63(19): 190202. doi: 10.7498/aps.63.190202
    [5] 毕传兴, 胡定玉, 张永斌, 徐亮. 基于等效源法和双面质点振速测量的声场分离方法.  , 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [6] 卞保民, 赖小明, 杨玲, 李振华, 贺安之. 自由质点测地线仿射参量时空坐标系.  , 2012, 61(17): 170401. doi: 10.7498/aps.61.170401
    [7] 陈阳益, 林楚佑, 李孟学, 李政达. 无旋性前进重力波传递在均匀流中的Lagrangen解析解与试验验证Ⅱ.试验验证.  , 2012, 61(3): 034703. doi: 10.7498/aps.61.034703
    [8] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制.  , 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [9] 丁光涛. 经典力学中加速度相关的Lagrange函数.  , 2009, 58(6): 3620-3624. doi: 10.7498/aps.58.3620
    [10] 丁光涛. 计算加速度相关Lagrange函数的方法.  , 2009, 58(10): 6725-6728. doi: 10.7498/aps.58.6725
    [11] 耿少飞, 唐德礼, 赵杰, 邱孝明. 圆柱形阳极层霍尔等离子体加速器的质点网格方法模拟.  , 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [12] 孟庆苗, 蒋继建, 王帅. 静态球对称黑洞的热质点模型及辐射功率.  , 2009, 58(11): 7486-7490. doi: 10.7498/aps.58.7486
    [13] 何 光, 梅凤翔. 三质点Toda晶格微分方程的积分.  , 2008, 57(1): 18-20. doi: 10.7498/aps.57.18
    [14] 郑春兰, 李同保, 马 艳, 马珊珊, 张宝武. 激光驻波场中Cr原子运动轨迹与汇聚沉积的分析.  , 2006, 55(9): 4528-4534. doi: 10.7498/aps.55.4528
    [15] 王培杰, 吴国祯. 混沌体系中寻找周期轨迹的方法.  , 2005, 54(7): 3034-3043. doi: 10.7498/aps.54.3034
    [16] 苍宇, 张杰, 邱阳, 张军, 彭练矛. 超热电子在非均匀磁场中的运动轨迹.  , 2002, 51(4): 843-846. doi: 10.7498/aps.51.843
    [17] 刘盛纲. 静电系统中电子运动轨迹的理论.  , 1966, 22(2): 233-244. doi: 10.7498/aps.22.233
    [18] 洪晶, 叶以正. 硅中位错运动速度.  , 1965, 21(12): 1968-1976. doi: 10.7498/aps.21.1968
    [19] 束星北. 流体力学的一个定理及在气象学上的应用(大气温度直降率的变化及对流顶同质点造成的条件).  , 1955, 11(1): 1-17. doi: 10.7498/aps.11.1
    [20] 邹国兴. 质点的相对论式的汉密尔敦运动式与相对论式的哈生堡方程式.  , 1947, 7(1): 9-20. doi: 10.7498/aps.7.9
计量
  • 文章访问数:  6588
  • PDF下载量:  491
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-31
  • 修回日期:  2011-05-16
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map