-
Reflection is a natural phenomenon that occurs when light passes the interface between materials with different refractive index. In many applications, such as solar cells, introduction of a substrate will result in an increase in reflection. There are many ways to reduce the reflection from a substrate, which have been investigated so far, including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles etc. Here we present an entirely new concept to eliminate reflection from a silicon wafer, which makes use of much simpler method than the ones reported before, and can be applied to any high-index material. Finite-difference-time-domain (FDTD) method and auxiliary differential equations are used in this paper to simulate a new structure that can suppress the reflection of light from a silicon surface over a broad spectral range. A two-dimensional periodic array of subwavelength silicon nanocylinders is designed, which possesses a phenomenon strongly substrate-coupled to the Mie resonances, and which can produce an extraordinary transmission phenomenon similar to the metal surface plasmon that yields almost zero total reflectance over the entire spectral range from ultraviolet to near-infrared. This new antireflection concept relies on the strong forward scattering that occurs when a scattering structure is placed in close proximity to a high-index substrate with a high optical density of states. For a detailed description of the problem, we have carried out some simulations. From the results, one can see that although nano-pillar covers only 30% of the substrate surface area, it can reduce the reflection from the surface from 30% to under 10% at the Mie resonance. For the purpose of reducing reflection from the substrate, this new structure designed may provide a reference for the actual solar cells and optical antenna design.
-
Keywords:
- auxiliary differential equation /
- finite-difference time-domain method /
- Mie resonances /
- extraordinary transmission
[1] Ding M, Xue H, Wu B, Sun B B, Liu Z, Huang Z X, Wu X L 2013 Acta Phys. Sin. 62 044218 (in Chinese) [丁敏, 薛辉, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良 2013 62 044218]
[2] Zhang J C, Xiong L M, Fang M, He H B 2013 Chin. Phys. B 22 044201
[3] He S X, Yu G J, Zhu Z Y 2012 International Conference on Solid State Device and Materials Los Angels, Elsevier, April 1-2, 2012 p854
[4] Macleod H A 2001 Thin-Film Optical Filters (3rd) (Florida:CRC Press) p668
[5] Lamers M W P E 2012 Prog. Photovolt 20 62
[6] Southwell W H 1991 J. Opt. Soc. Am. 8 549
[7] Liu W, Miroshnichenko A E, Neshev D N, Kivshar Y S 2012 ACS Nano. 6 5489
[8] Pellegrini G, Mazzoldi P, Mattei G 2012 J. Phys. Chem. C 116 21536
[9] Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[10] Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188
[11] Spinelli P, Hebbink M, Waele R, Black L, Lenzmann F, Polman A 2011 Nano Lett. 11 1760
[12] Atwater H A, Polman A 2010 Nat. Mater 9 205
[13] Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[14] Vernon K C, Funston A M, Novo C, Gómez D E, Mulvaney P, Davis T J 2010 Nano Lett. 10 2080
[15] Chen H J, Ming T, Zhang S R, Jin Z, Yang B C, Wang J F 2011 ACS Nano 5 4865
[16] Chen H J, Shao L, Ming T, Woo K C, Man Y C, Wang J F, Lin H Q 2011 ACS Nano. 5 6754
[17] Wu Y, Nordlander P 2010 J. Phys. Chem. C 114 7302
[18] Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S, Brongersma M L 2010 Nano Lett. 10 439
[19] Ren X G, Huang Z X, Wu X L, Lu S L, Wang H, Wu L, Li S 2012 Comput. Phys. Commun. 183 1192
[20] Wang H, Wu B, Huang Z X, Wu X L 2013 Comput. Phys. Commun. 185 862
[21] Wang H, Huang Z X, Wu X L, Ren X G, Wu B 2014 Acta Phys. Sin. 63 070203 (in Chinese) [王辉, 黄志祥, 吴先良, 任信刚, 吴博 2014 63 070203]
[22] Mie G 1908 Ann. Phys. 330 377
[23] Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Heppenheim:Wiley-VCH) p83
[24] Deinega A, Valnev I, Potapkin B, Lozovik Y 2011 J. Opt. Am. A 28 770
[25] Taflove A, Hagness S G 2000 Computational Electrodynamics:The Finite-Difference Time-domain Method (2rd) (London:Artech House Publishers) p235
[26] Hu Q F, Xu H, Liu J, Zhuo H B, Chi L H, Jiang J, Yan Y H 2009 Comput. Eng. Sci 31 188 (in Chinese) [胡庆丰, 徐 涵, 刘 杰, 卓红斌, 迟利华, 蒋 杰, 晏益慧 2009 计算机工程与科学 31 188]
[27] Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 61 194701]
[28] Ginn J C, Brener I, Peters D W, Wendt J R, Stevens J O, Hines P F, Basilio L I, Warne L K 2012 Phys. Rev. Lett. 108 097402
[29] Miroshnichenko A E, Kivshar Y S 2012 Nano Lett. 12 6459
[30] Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I, Chichkov B N 2012 Nano Lett. 12 3749
[31] García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz J J 2011 Opt. Express 19 4815
[32] Huang Z, Koschny T, Soukoulis C M 2012 Phys. Rev. Lett. 108 187402
[33] Rayleigh J W S 1907 Philos. Mag. 14 60
[34] Kippenberg T J, Tchebotareva A L, Kalkman J, Polman A, Vahala K J 2009 Phys. Rev. Lett. 103 027
-
[1] Ding M, Xue H, Wu B, Sun B B, Liu Z, Huang Z X, Wu X L 2013 Acta Phys. Sin. 62 044218 (in Chinese) [丁敏, 薛辉, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良 2013 62 044218]
[2] Zhang J C, Xiong L M, Fang M, He H B 2013 Chin. Phys. B 22 044201
[3] He S X, Yu G J, Zhu Z Y 2012 International Conference on Solid State Device and Materials Los Angels, Elsevier, April 1-2, 2012 p854
[4] Macleod H A 2001 Thin-Film Optical Filters (3rd) (Florida:CRC Press) p668
[5] Lamers M W P E 2012 Prog. Photovolt 20 62
[6] Southwell W H 1991 J. Opt. Soc. Am. 8 549
[7] Liu W, Miroshnichenko A E, Neshev D N, Kivshar Y S 2012 ACS Nano. 6 5489
[8] Pellegrini G, Mazzoldi P, Mattei G 2012 J. Phys. Chem. C 116 21536
[9] Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[10] Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188
[11] Spinelli P, Hebbink M, Waele R, Black L, Lenzmann F, Polman A 2011 Nano Lett. 11 1760
[12] Atwater H A, Polman A 2010 Nat. Mater 9 205
[13] Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[14] Vernon K C, Funston A M, Novo C, Gómez D E, Mulvaney P, Davis T J 2010 Nano Lett. 10 2080
[15] Chen H J, Ming T, Zhang S R, Jin Z, Yang B C, Wang J F 2011 ACS Nano 5 4865
[16] Chen H J, Shao L, Ming T, Woo K C, Man Y C, Wang J F, Lin H Q 2011 ACS Nano. 5 6754
[17] Wu Y, Nordlander P 2010 J. Phys. Chem. C 114 7302
[18] Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S, Brongersma M L 2010 Nano Lett. 10 439
[19] Ren X G, Huang Z X, Wu X L, Lu S L, Wang H, Wu L, Li S 2012 Comput. Phys. Commun. 183 1192
[20] Wang H, Wu B, Huang Z X, Wu X L 2013 Comput. Phys. Commun. 185 862
[21] Wang H, Huang Z X, Wu X L, Ren X G, Wu B 2014 Acta Phys. Sin. 63 070203 (in Chinese) [王辉, 黄志祥, 吴先良, 任信刚, 吴博 2014 63 070203]
[22] Mie G 1908 Ann. Phys. 330 377
[23] Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Heppenheim:Wiley-VCH) p83
[24] Deinega A, Valnev I, Potapkin B, Lozovik Y 2011 J. Opt. Am. A 28 770
[25] Taflove A, Hagness S G 2000 Computational Electrodynamics:The Finite-Difference Time-domain Method (2rd) (London:Artech House Publishers) p235
[26] Hu Q F, Xu H, Liu J, Zhuo H B, Chi L H, Jiang J, Yan Y H 2009 Comput. Eng. Sci 31 188 (in Chinese) [胡庆丰, 徐 涵, 刘 杰, 卓红斌, 迟利华, 蒋 杰, 晏益慧 2009 计算机工程与科学 31 188]
[27] Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 61 194701]
[28] Ginn J C, Brener I, Peters D W, Wendt J R, Stevens J O, Hines P F, Basilio L I, Warne L K 2012 Phys. Rev. Lett. 108 097402
[29] Miroshnichenko A E, Kivshar Y S 2012 Nano Lett. 12 6459
[30] Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I, Chichkov B N 2012 Nano Lett. 12 3749
[31] García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz J J 2011 Opt. Express 19 4815
[32] Huang Z, Koschny T, Soukoulis C M 2012 Phys. Rev. Lett. 108 187402
[33] Rayleigh J W S 1907 Philos. Mag. 14 60
[34] Kippenberg T J, Tchebotareva A L, Kalkman J, Polman A, Vahala K J 2009 Phys. Rev. Lett. 103 027
Catalog
Metrics
- Abstract views: 6481
- PDF Downloads: 756
- Cited By: 0