-
A three-dimensional (3D) numerical analysis model of tungsten inert gas welding arc interacting with an anode material is presented based on the local thermodynamic equilibrium assumption and taking the behavior of metal vapor into account. The thermodynamic parameters and transport coefficients of plasma arc are dependent on the local temperature and metal vapor concentration. A second viscosity approximation is used to express the diffusion coefficient which describes the metal vapor diffuse in the argon plasma. The weld pool dynamic is described by taking into account the buoyancy, Lorentz force, surface tension, and plasma drag force. The temperature coefficient of the surface tension at the weld pool surface is considered in two ways: one is taken as a function of temperature with only oxygen being the active component, and the other is taken as a constant value. The distributions of temperature field and velocity field of arc plasma and weld pool, metal vapor concentration and current density in the arc plasma are investigated by solving the Maxwell equations, continuity equation, momentum conservation equation, energy conservation equation and the components of the transport equation. The influence of metal vapor on arc plasma behavior and that of arc plasma on the weld pool are studied and compared with the non-metal vapor results. It is shown that the distribution of Fe vapor concentrates around the weld pool surface. Metal vapor has obvious shrinkage effect on arc plasma, and weak influences on velocity and potential of the arc plasma. In addition, the metal vapor has a weak effect on the distributions of velocity and shear force on the weld pool surface and no obvious influence on the molten pool shape. We test two different methods to illustrate this point in the case with or without metal vapor. The method used for a variable temperature coefficient of surface tension allows the prediction of a depth-to-width ratio and weld pool shape in agreement with experimental result when taking the behavior of metal vapor into account. The results in this paper, obtained by simulation are in good agreement with experimental results and also with the simulation results by some other authors.
-
Keywords:
- tungsten inert gas welding /
- metal vapor /
- coupling interaction /
- numerical analysis
[1] Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009
[2] Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101 (in Chinese) [王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101]
[3] Shi Y, Han R H, Huang J K, Fan D 2012 Acta Phys. Sin. 61 020205 (in Chinese) [石玗, 韩日宏, 黄健康, 樊丁 2012 61 020205]
[4] Wang X J, Wu C S, Chen M A 2010 Acta Metall. Sin. 46 984 (in Chinese) [王小杰, 武传松, 陈茂爱 2010 金属学报 46 984]
[5] Dong W C, Lu S P, Li D Z, Li Y Y 2008 Acta Metall. Sin. 44 249 (in Chinese) [董文超, 陆善平, 李殿中, 李依依 2008 金属学报 44 249]
[6] Lu F G, Yao S, Qian W F 2004 Chin. J. Mech. Eng. 40 145 (in Chinese) [芦凤桂, 姚舜, 钱伟方 2004 机械工程学报 40 145]
[7] Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S094 (in Chinese) [陆善平, 董文超, 李殿中, 李依依 2009 58 S094]
[8] Lei Y P, Gu X H, Shi Y W, Hidekazu M 2001 Acta Metall. Sin. 37 537 (in Chinese) [雷永平, 顾向华, 史耀武, 村川英一 2001 金属学报 37 537]
[9] Zhao P, Ni G H, Meng Y D, Nagatsu M 2013 Chin. Phys. B 22 064701
[10] Yin X, Guo J, Zhang J, Sun J 2012 J. Phys. D: Appl. Phys. 45 285203
[11] Lago F, Gonzalez J J, Freton P 2004 J. Phys. D: Appl. Phys. 37 883
[12] Tanaka M, Yamamoto K, Tashiro S, Nakata K, Ushio M, Yamazaki K, Yamamoto E, Suzuki K, Murphy A B, Lowke J J 2008 Weld. World 52 82
[13] Terasaki H, Tanaka M, Ushio M 2002 Metall. Mater. Trans. A 33 1183
[14] Wang Z J 2006 Welding Method and Equipment (Beijing: Mechanical Industry Press) p160 (in Chinese) [王宗杰 2006 熔焊方法及设备(北京: 机械工业出版社)第160页]
[15] Voller V R, Prakash C 1987 Int. J. Heat Mass Transfer 32 1719
[16] Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205
[17] Wu C S, Gao J Q 2002 Compt. Mater. Sci. 24 323
[18] Wang X X, Fan D, Huang J K, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202
[19] Ushio M, Fan D, Tanaka M 1994 J. Phys. D: Appl. Phys. 27 561
[20] Sanders N A, Pfender E 1984 J. Appl. Phys. 55 714
[21] Lago F, Gonzalez J J, Freton P, Uhlig F, Lucius N, Piau G P 2006 J. Phys. D: Appl. Phys. 39 2294
[22] Sansonnens L, Haidar J, Lowke J J 2000 J. Phys. D: Appl. Phys. 33 148
[23] Dinulescu H A, Pfender E 1980 J. Appl. Phys. 51 3149
[24] Tanaka M, Ushio M 1999 J. Phys. D: Appl. Phys. 32 906
[25] Mougenot J, Gonzalez J J, Freton P, Masquere M 2013 J Phys. D: Appl. Phys. 46 135206
[26] Zhu P Y, Lowke J J, Morrow R, Haidar J 1995 J. Phys. D: Appl. Phys. 28 1369
[27] Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006
[28] Lowke J J, Kovitya P, Schmidt H P 1992 J. Phys. D: Appl. Phys. 25 1600
[29] Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253
[30] Gonzalez J J, Cayla F, Freton P 2009 J. Phys. D: Appl. Phys. 42 145204
[31] Sahoo P, DebRoy T, McNallan M J 1988 Metall. Trans. B 19 483
[32] Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922
[33] Yoshida T, Akashi K 1977 J. Appl. Phys. 48 2252
[34] Wu C S 2008 Welding Thermal Process and Molten pool Dynamic (Beijing: Machanical Industry Press) p123 (in Chinese) [武传松 2008 焊接热过程与熔池形态(北京: 机械工业出版社)第123页]
[35] Menart J, Malik S 2002 J. Phys. D: Appl. Phys. 35 867
[36] Cram L E 1985 J. Phys. D: Appl. Phys. 18 401
[37] Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001
[38] Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451
[39] Dunn G J 1984 M. S. Dissertation (America: Massachusetts Institute of Technology)
[40] Menart J, Lin L 1999 Plasma Chem. Plasma Process. 19 153
-
[1] Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009
[2] Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101 (in Chinese) [王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101]
[3] Shi Y, Han R H, Huang J K, Fan D 2012 Acta Phys. Sin. 61 020205 (in Chinese) [石玗, 韩日宏, 黄健康, 樊丁 2012 61 020205]
[4] Wang X J, Wu C S, Chen M A 2010 Acta Metall. Sin. 46 984 (in Chinese) [王小杰, 武传松, 陈茂爱 2010 金属学报 46 984]
[5] Dong W C, Lu S P, Li D Z, Li Y Y 2008 Acta Metall. Sin. 44 249 (in Chinese) [董文超, 陆善平, 李殿中, 李依依 2008 金属学报 44 249]
[6] Lu F G, Yao S, Qian W F 2004 Chin. J. Mech. Eng. 40 145 (in Chinese) [芦凤桂, 姚舜, 钱伟方 2004 机械工程学报 40 145]
[7] Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S094 (in Chinese) [陆善平, 董文超, 李殿中, 李依依 2009 58 S094]
[8] Lei Y P, Gu X H, Shi Y W, Hidekazu M 2001 Acta Metall. Sin. 37 537 (in Chinese) [雷永平, 顾向华, 史耀武, 村川英一 2001 金属学报 37 537]
[9] Zhao P, Ni G H, Meng Y D, Nagatsu M 2013 Chin. Phys. B 22 064701
[10] Yin X, Guo J, Zhang J, Sun J 2012 J. Phys. D: Appl. Phys. 45 285203
[11] Lago F, Gonzalez J J, Freton P 2004 J. Phys. D: Appl. Phys. 37 883
[12] Tanaka M, Yamamoto K, Tashiro S, Nakata K, Ushio M, Yamazaki K, Yamamoto E, Suzuki K, Murphy A B, Lowke J J 2008 Weld. World 52 82
[13] Terasaki H, Tanaka M, Ushio M 2002 Metall. Mater. Trans. A 33 1183
[14] Wang Z J 2006 Welding Method and Equipment (Beijing: Mechanical Industry Press) p160 (in Chinese) [王宗杰 2006 熔焊方法及设备(北京: 机械工业出版社)第160页]
[15] Voller V R, Prakash C 1987 Int. J. Heat Mass Transfer 32 1719
[16] Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205
[17] Wu C S, Gao J Q 2002 Compt. Mater. Sci. 24 323
[18] Wang X X, Fan D, Huang J K, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202
[19] Ushio M, Fan D, Tanaka M 1994 J. Phys. D: Appl. Phys. 27 561
[20] Sanders N A, Pfender E 1984 J. Appl. Phys. 55 714
[21] Lago F, Gonzalez J J, Freton P, Uhlig F, Lucius N, Piau G P 2006 J. Phys. D: Appl. Phys. 39 2294
[22] Sansonnens L, Haidar J, Lowke J J 2000 J. Phys. D: Appl. Phys. 33 148
[23] Dinulescu H A, Pfender E 1980 J. Appl. Phys. 51 3149
[24] Tanaka M, Ushio M 1999 J. Phys. D: Appl. Phys. 32 906
[25] Mougenot J, Gonzalez J J, Freton P, Masquere M 2013 J Phys. D: Appl. Phys. 46 135206
[26] Zhu P Y, Lowke J J, Morrow R, Haidar J 1995 J. Phys. D: Appl. Phys. 28 1369
[27] Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006
[28] Lowke J J, Kovitya P, Schmidt H P 1992 J. Phys. D: Appl. Phys. 25 1600
[29] Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253
[30] Gonzalez J J, Cayla F, Freton P 2009 J. Phys. D: Appl. Phys. 42 145204
[31] Sahoo P, DebRoy T, McNallan M J 1988 Metall. Trans. B 19 483
[32] Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922
[33] Yoshida T, Akashi K 1977 J. Appl. Phys. 48 2252
[34] Wu C S 2008 Welding Thermal Process and Molten pool Dynamic (Beijing: Machanical Industry Press) p123 (in Chinese) [武传松 2008 焊接热过程与熔池形态(北京: 机械工业出版社)第123页]
[35] Menart J, Malik S 2002 J. Phys. D: Appl. Phys. 35 867
[36] Cram L E 1985 J. Phys. D: Appl. Phys. 18 401
[37] Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001
[38] Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451
[39] Dunn G J 1984 M. S. Dissertation (America: Massachusetts Institute of Technology)
[40] Menart J, Lin L 1999 Plasma Chem. Plasma Process. 19 153
Catalog
Metrics
- Abstract views: 6232
- PDF Downloads: 273
- Cited By: 0