Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional numerical analysis of interaction between arc and pool by considering the behavior of the metal vapor in tungsten inert gas welding

Fan Ding Huang Zi-Cheng Huang Jian-Kang Wang Xin-Xin Huang Yong

Citation:

Three-dimensional numerical analysis of interaction between arc and pool by considering the behavior of the metal vapor in tungsten inert gas welding

Fan Ding, Huang Zi-Cheng, Huang Jian-Kang, Wang Xin-Xin, Huang Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A three-dimensional (3D) numerical analysis model of tungsten inert gas welding arc interacting with an anode material is presented based on the local thermodynamic equilibrium assumption and taking the behavior of metal vapor into account. The thermodynamic parameters and transport coefficients of plasma arc are dependent on the local temperature and metal vapor concentration. A second viscosity approximation is used to express the diffusion coefficient which describes the metal vapor diffuse in the argon plasma. The weld pool dynamic is described by taking into account the buoyancy, Lorentz force, surface tension, and plasma drag force. The temperature coefficient of the surface tension at the weld pool surface is considered in two ways: one is taken as a function of temperature with only oxygen being the active component, and the other is taken as a constant value. The distributions of temperature field and velocity field of arc plasma and weld pool, metal vapor concentration and current density in the arc plasma are investigated by solving the Maxwell equations, continuity equation, momentum conservation equation, energy conservation equation and the components of the transport equation. The influence of metal vapor on arc plasma behavior and that of arc plasma on the weld pool are studied and compared with the non-metal vapor results. It is shown that the distribution of Fe vapor concentrates around the weld pool surface. Metal vapor has obvious shrinkage effect on arc plasma, and weak influences on velocity and potential of the arc plasma. In addition, the metal vapor has a weak effect on the distributions of velocity and shear force on the weld pool surface and no obvious influence on the molten pool shape. We test two different methods to illustrate this point in the case with or without metal vapor. The method used for a variable temperature coefficient of surface tension allows the prediction of a depth-to-width ratio and weld pool shape in agreement with experimental result when taking the behavior of metal vapor into account. The results in this paper, obtained by simulation are in good agreement with experimental results and also with the simulation results by some other authors.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51074084, 51205179), and the Natural Science Foundation of Gansu Province, China (Grant No. 1010RJZA037).
    [1]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009

    [2]

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101 (in Chinese) [王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101]

    [3]

    Shi Y, Han R H, Huang J K, Fan D 2012 Acta Phys. Sin. 61 020205 (in Chinese) [石玗, 韩日宏, 黄健康, 樊丁 2012 61 020205]

    [4]

    Wang X J, Wu C S, Chen M A 2010 Acta Metall. Sin. 46 984 (in Chinese) [王小杰, 武传松, 陈茂爱 2010 金属学报 46 984]

    [5]

    Dong W C, Lu S P, Li D Z, Li Y Y 2008 Acta Metall. Sin. 44 249 (in Chinese) [董文超, 陆善平, 李殿中, 李依依 2008 金属学报 44 249]

    [6]

    Lu F G, Yao S, Qian W F 2004 Chin. J. Mech. Eng. 40 145 (in Chinese) [芦凤桂, 姚舜, 钱伟方 2004 机械工程学报 40 145]

    [7]

    Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S094 (in Chinese) [陆善平, 董文超, 李殿中, 李依依 2009 58 S094]

    [8]

    Lei Y P, Gu X H, Shi Y W, Hidekazu M 2001 Acta Metall. Sin. 37 537 (in Chinese) [雷永平, 顾向华, 史耀武, 村川英一 2001 金属学报 37 537]

    [9]

    Zhao P, Ni G H, Meng Y D, Nagatsu M 2013 Chin. Phys. B 22 064701

    [10]

    Yin X, Guo J, Zhang J, Sun J 2012 J. Phys. D: Appl. Phys. 45 285203

    [11]

    Lago F, Gonzalez J J, Freton P 2004 J. Phys. D: Appl. Phys. 37 883

    [12]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Ushio M, Yamazaki K, Yamamoto E, Suzuki K, Murphy A B, Lowke J J 2008 Weld. World 52 82

    [13]

    Terasaki H, Tanaka M, Ushio M 2002 Metall. Mater. Trans. A 33 1183

    [14]

    Wang Z J 2006 Welding Method and Equipment (Beijing: Mechanical Industry Press) p160 (in Chinese) [王宗杰 2006 熔焊方法及设备(北京: 机械工业出版社)第160页]

    [15]

    Voller V R, Prakash C 1987 Int. J. Heat Mass Transfer 32 1719

    [16]

    Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205

    [17]

    Wu C S, Gao J Q 2002 Compt. Mater. Sci. 24 323

    [18]

    Wang X X, Fan D, Huang J K, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202

    [19]

    Ushio M, Fan D, Tanaka M 1994 J. Phys. D: Appl. Phys. 27 561

    [20]

    Sanders N A, Pfender E 1984 J. Appl. Phys. 55 714

    [21]

    Lago F, Gonzalez J J, Freton P, Uhlig F, Lucius N, Piau G P 2006 J. Phys. D: Appl. Phys. 39 2294

    [22]

    Sansonnens L, Haidar J, Lowke J J 2000 J. Phys. D: Appl. Phys. 33 148

    [23]

    Dinulescu H A, Pfender E 1980 J. Appl. Phys. 51 3149

    [24]

    Tanaka M, Ushio M 1999 J. Phys. D: Appl. Phys. 32 906

    [25]

    Mougenot J, Gonzalez J J, Freton P, Masquere M 2013 J Phys. D: Appl. Phys. 46 135206

    [26]

    Zhu P Y, Lowke J J, Morrow R, Haidar J 1995 J. Phys. D: Appl. Phys. 28 1369

    [27]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006

    [28]

    Lowke J J, Kovitya P, Schmidt H P 1992 J. Phys. D: Appl. Phys. 25 1600

    [29]

    Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253

    [30]

    Gonzalez J J, Cayla F, Freton P 2009 J. Phys. D: Appl. Phys. 42 145204

    [31]

    Sahoo P, DebRoy T, McNallan M J 1988 Metall. Trans. B 19 483

    [32]

    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922

    [33]

    Yoshida T, Akashi K 1977 J. Appl. Phys. 48 2252

    [34]

    Wu C S 2008 Welding Thermal Process and Molten pool Dynamic (Beijing: Machanical Industry Press) p123 (in Chinese) [武传松 2008 焊接热过程与熔池形态(北京: 机械工业出版社)第123页]

    [35]

    Menart J, Malik S 2002 J. Phys. D: Appl. Phys. 35 867

    [36]

    Cram L E 1985 J. Phys. D: Appl. Phys. 18 401

    [37]

    Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001

    [38]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451

    [39]

    Dunn G J 1984 M. S. Dissertation (America: Massachusetts Institute of Technology)

    [40]

    Menart J, Lin L 1999 Plasma Chem. Plasma Process. 19 153

  • [1]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009

    [2]

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101 (in Chinese) [王新鑫, 樊丁, 黄健康, 黄勇 2013 62 228101]

    [3]

    Shi Y, Han R H, Huang J K, Fan D 2012 Acta Phys. Sin. 61 020205 (in Chinese) [石玗, 韩日宏, 黄健康, 樊丁 2012 61 020205]

    [4]

    Wang X J, Wu C S, Chen M A 2010 Acta Metall. Sin. 46 984 (in Chinese) [王小杰, 武传松, 陈茂爱 2010 金属学报 46 984]

    [5]

    Dong W C, Lu S P, Li D Z, Li Y Y 2008 Acta Metall. Sin. 44 249 (in Chinese) [董文超, 陆善平, 李殿中, 李依依 2008 金属学报 44 249]

    [6]

    Lu F G, Yao S, Qian W F 2004 Chin. J. Mech. Eng. 40 145 (in Chinese) [芦凤桂, 姚舜, 钱伟方 2004 机械工程学报 40 145]

    [7]

    Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S094 (in Chinese) [陆善平, 董文超, 李殿中, 李依依 2009 58 S094]

    [8]

    Lei Y P, Gu X H, Shi Y W, Hidekazu M 2001 Acta Metall. Sin. 37 537 (in Chinese) [雷永平, 顾向华, 史耀武, 村川英一 2001 金属学报 37 537]

    [9]

    Zhao P, Ni G H, Meng Y D, Nagatsu M 2013 Chin. Phys. B 22 064701

    [10]

    Yin X, Guo J, Zhang J, Sun J 2012 J. Phys. D: Appl. Phys. 45 285203

    [11]

    Lago F, Gonzalez J J, Freton P 2004 J. Phys. D: Appl. Phys. 37 883

    [12]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Ushio M, Yamazaki K, Yamamoto E, Suzuki K, Murphy A B, Lowke J J 2008 Weld. World 52 82

    [13]

    Terasaki H, Tanaka M, Ushio M 2002 Metall. Mater. Trans. A 33 1183

    [14]

    Wang Z J 2006 Welding Method and Equipment (Beijing: Mechanical Industry Press) p160 (in Chinese) [王宗杰 2006 熔焊方法及设备(北京: 机械工业出版社)第160页]

    [15]

    Voller V R, Prakash C 1987 Int. J. Heat Mass Transfer 32 1719

    [16]

    Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205

    [17]

    Wu C S, Gao J Q 2002 Compt. Mater. Sci. 24 323

    [18]

    Wang X X, Fan D, Huang J K, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202

    [19]

    Ushio M, Fan D, Tanaka M 1994 J. Phys. D: Appl. Phys. 27 561

    [20]

    Sanders N A, Pfender E 1984 J. Appl. Phys. 55 714

    [21]

    Lago F, Gonzalez J J, Freton P, Uhlig F, Lucius N, Piau G P 2006 J. Phys. D: Appl. Phys. 39 2294

    [22]

    Sansonnens L, Haidar J, Lowke J J 2000 J. Phys. D: Appl. Phys. 33 148

    [23]

    Dinulescu H A, Pfender E 1980 J. Appl. Phys. 51 3149

    [24]

    Tanaka M, Ushio M 1999 J. Phys. D: Appl. Phys. 32 906

    [25]

    Mougenot J, Gonzalez J J, Freton P, Masquere M 2013 J Phys. D: Appl. Phys. 46 135206

    [26]

    Zhu P Y, Lowke J J, Morrow R, Haidar J 1995 J. Phys. D: Appl. Phys. 28 1369

    [27]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006

    [28]

    Lowke J J, Kovitya P, Schmidt H P 1992 J. Phys. D: Appl. Phys. 25 1600

    [29]

    Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253

    [30]

    Gonzalez J J, Cayla F, Freton P 2009 J. Phys. D: Appl. Phys. 42 145204

    [31]

    Sahoo P, DebRoy T, McNallan M J 1988 Metall. Trans. B 19 483

    [32]

    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922

    [33]

    Yoshida T, Akashi K 1977 J. Appl. Phys. 48 2252

    [34]

    Wu C S 2008 Welding Thermal Process and Molten pool Dynamic (Beijing: Machanical Industry Press) p123 (in Chinese) [武传松 2008 焊接热过程与熔池形态(北京: 机械工业出版社)第123页]

    [35]

    Menart J, Malik S 2002 J. Phys. D: Appl. Phys. 35 867

    [36]

    Cram L E 1985 J. Phys. D: Appl. Phys. 18 401

    [37]

    Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001

    [38]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451

    [39]

    Dunn G J 1984 M. S. Dissertation (America: Massachusetts Institute of Technology)

    [40]

    Menart J, Lin L 1999 Plasma Chem. Plasma Process. 19 153

  • [1] Xia Wen-Ze, Liu Yang, He Ming-Zhao, Cao Shi-Ying, Yang Wei-Lei, Zhang Fu-Min, Miao Dong-Jing, Li Jian-Shuang. Numerical analyses of key parameters of nonlinear asynchronous optical sampling using dual-comb system. Acta Physica Sinica, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [2] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [3] Chen Wei-Jun, Song De, Li Ye, Wang Xin, Qin Xu-Lei, Liu Chun-Yang. Control on interaction of Airy-Gaussian beams in competing nonlinear medium. Acta Physica Sinica, 2019, 68(9): 094206. doi: 10.7498/aps.68.20190042
    [4] Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Zhang Bao-Ju. Propagation and interactions of Airy-Gaussian beams in saturable nonliear medium. Acta Physica Sinica, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [5] Sun Su-Rong, Wang Hai-Xing. A comparison of interatomic potentials for noble gases. Acta Physica Sinica, 2015, 64(14): 143401. doi: 10.7498/aps.64.143401
    [6] He Yan-Sheng, Fu Shi-Hua, Zhang Qing-Chuan. Simulations of the interactions between dislocations and solute atoms in different loading conditions. Acta Physica Sinica, 2014, 63(22): 228102. doi: 10.7498/aps.63.228102
    [7] Gao Xiang-Dong, Wang Run-Lin, Long Guan-Fu, Katayama Seiji. Study of characteristics of plume based on hue-saturation-intensity during high-power disk laser welding. Acta Physica Sinica, 2012, 61(14): 148103. doi: 10.7498/aps.61.148103
    [8] Lin Min, Zhang Mei-Li. Interaction of force and coupled system and stochastic energetic resonance. Acta Physica Sinica, 2011, 60(2): 020501. doi: 10.7498/aps.60.020501
    [9] Wan Pin, Zhan Yi-Ju, Li Xue-Cong, Wang Yong-Hua. Numerical research of signal-to-noise ratio gain on a monostable stochastic resonance. Acta Physica Sinica, 2011, 60(4): 040502. doi: 10.7498/aps.60.040502
    [10] Yang Yi-Tao, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Zhang Li-Qing. Synthesis of metallic nanoparticles in spinel via defects induced by the inert-gas-ion implantation. Acta Physica Sinica, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [11] Xing Hong-Wei, Peng Ying-Quan, Yang Qing-Sen, Ma Chao-Zhu, Wang Run-Sheng, Li Xun-Shuan. Simulation of polymer-fullerene bulk heterojunction solar cell. Acta Physica Sinica, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [12] Wang Ying, Liu Xu, Zhang Yue-Guang, Gu Pei-Fu, Li Yi-Yu, Li Ming-Yu. Numerical analysis of thermal response of mid-infrared high reflectance coating under different laser irradiation angles. Acta Physica Sinica, 2007, 56(4): 2382-2387. doi: 10.7498/aps.56.2382
    [13] Wu Zhao-Hui, Song Feng, Liu Shu-Jing, Qin Bin, Su Jing, Tian Jian-Guo, Zhang Guang-Yin. Influence of upconversion effect on Er3+, Yb3+co-doped phosphate glass lasers. Acta Physica Sinica, 2005, 54(12): 5637-5641. doi: 10.7498/aps.54.5637
    [14] Nie Zai-Ping, Wang Hao-Gang. Globalized numerical modeling of electromagnetic scattering from conductive targ ets with open cavity and electrically large size. Acta Physica Sinica, 2003, 52(12): 3035-3042. doi: 10.7498/aps.52.3035
    [15] Leng Yong-Gang, Wang Tai-Yong. Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy Noise. Acta Physica Sinica, 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
    [16] Guo Jian-Jun. . Acta Physica Sinica, 2002, 51(3): 497-500. doi: 10.7498/aps.51.497
    [17] Song Feng, Meng Fan-Zhen, Ding Xin, Zhang Chao-Bo, Yang Jia, Zhang Guang-Yin. . Acta Physica Sinica, 2002, 51(6): 1233-1238. doi: 10.7498/aps.51.1233
    [18] SUN ZONG-QI. INTERACTION POTENTIAL FIELD BETWEEN A GEOMET-RICAL KINK AND A POINT DEFECT. Acta Physica Sinica, 1992, 41(12): 1980-1986. doi: 10.7498/aps.41.1980
    [19] KONG QING-PING, WANG XIANG, ZHOU HAO, NI QUN-HUI. ELECTRON MICROSCOPY STUDIES ON THE INTERACTION BETWEEN CREEP AND FATIGUE. Acta Physica Sinica, 1986, 35(8): 1091-1094. doi: 10.7498/aps.35.1091
    [20] SUN ZONG-QI. ANELASTIC INTERACTION BETWEEN MOVING KINK AND MOBILE PAIRS OF POINT DEFECTS. Acta Physica Sinica, 1984, 33(7): 989-998. doi: 10.7498/aps.33.989
Metrics
  • Abstract views:  6232
  • PDF Downloads:  273
  • Cited By: 0
Publishing process
  • Received Date:  05 November 2014
  • Accepted Date:  26 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map