-
Quasi-isentropic compression technique is very useful for new material, shock wave physics, and earth physics. With shaping pulse laser, the quasi-isentropic compression technique is provided. For the designed experimental condition, the high energy density of shaping lasers can be used to generate shockless loading on the solid material to reach a high compression rate state with low temperature, which cannot be obtained with shock compression and isentropic compression technique. Then a new way to study the material can be provided. In this paper, the isentropic compression experiment with laser direct-drive illumination based on Shen Guang-III prototype laser facility is conducted. The theoretical model, target designing, experimental results, key technique, experimental characteristics and experimental data are analyzed in detail. The compression pressure above 400 GPa on the loading surface is obtained with experimental data and processing program, which is the highest pressure achieved to date. After comparing the apparent particle velocity with the true particle velocity, the dynamic correction curve can be obtained to achieve the real particle velocity, which is more accurate. The improving direction is provided, which will provide the important information. The experimental data and design will give the valuable reference for the study in this field.
-
Keywords:
- shock wave /
- direct-drive /
- isentropic /
- interferometer
[1] Munro D H, Celliers P M, Collins G W, Gold D M, Da Silva L B, Haan S W, Cauble R C, Hammel B A, Hsing W W 2001 Phys. Plasmas 8 2245
[2] Boehly T R, Vianello E, Miller J E, Craxton R S, Collins T J B, Goncharov V N, Igumenshchev I V, Meyerhoferc D D, Hicks D G, Celliers P M, Collins G W 2006 Phys. Plasmas 13 056303
[3] Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F, Remington B A 2006 High Energ. Dens. Phys. 2 113
[4] Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202
[5] Shen Q, Luo G Q, Zhang L M, Huang H J 2007 Acta Phys. Sin. 56 1538 (in Chinese) [沈强, 罗国强, 张联盟, 黄海军 2007 56 1538]
[6] Jin K, Li P, Wu Q, Jin X G 2004 Explo. Shock Waves 24 419 (in Chinese) [金柯, 李平, 吴强, 金孝刚 2004 爆炸与冲击 24 419]
[7] Gui Y L, Liu C L, Wang Y P, Sun C W 2005 Detonation Shock Waves 25 183 (in Chinese) [桂毓林, 刘仓理, 王彦平, 孙承纬 2005 爆轰波与冲击波 25 183]
[8] Smith R F, Eggert J H, Jankowski A, Celliers P M, Edwards M J, Gupta Y M, Asay J R, Collins G W 2007 Phys. Rev. Lett. 98 065701
[9] Harlow F H, Amsden A A 1971 Los Alamos Scientific Laboratory Report No. LA-4700
[10] Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: Defense Industry Press) (in Chinese) [李维新 2003 一维不定常流与冲击波 (北京: 国防工业出版社)]
[11] Lindl J 1995 Phys. Plasmas 2 3933
[12] Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Acta Phys. Sin. 60 025202 (in Chinese) [王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤 2011 60 025202]
[13] Wang F, Peng X S, Liu S Y, Jiang X H, Xu T, Ding Y K, Zhang B H 2011 Acta Phys. Sin. 60 115203 (in Chinese) [王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉 2011 60 115203]
[14] Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916
[15] Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D: Appl. Phys. 38 733
[16] Rothman S D, Maw J 2006 J. Phys. IV France 134 745
[17] Kerley G I 1987 Int. J. Impact Eng. 5 441
[18] Johnson J D 1994 Los Alamos Scientific Laboratory Report No. LA-UR-94-1451
[19] Xue Q X 2014 Ph. D. Dissertation (Mianyang: China Academic Engineering of Physics) ( in Chinese) [薛全喜 2014 博士学位论文 (绵阳: 中国工程物理研究院)]
[20] Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521
-
[1] Munro D H, Celliers P M, Collins G W, Gold D M, Da Silva L B, Haan S W, Cauble R C, Hammel B A, Hsing W W 2001 Phys. Plasmas 8 2245
[2] Boehly T R, Vianello E, Miller J E, Craxton R S, Collins T J B, Goncharov V N, Igumenshchev I V, Meyerhoferc D D, Hicks D G, Celliers P M, Collins G W 2006 Phys. Plasmas 13 056303
[3] Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F, Remington B A 2006 High Energ. Dens. Phys. 2 113
[4] Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202
[5] Shen Q, Luo G Q, Zhang L M, Huang H J 2007 Acta Phys. Sin. 56 1538 (in Chinese) [沈强, 罗国强, 张联盟, 黄海军 2007 56 1538]
[6] Jin K, Li P, Wu Q, Jin X G 2004 Explo. Shock Waves 24 419 (in Chinese) [金柯, 李平, 吴强, 金孝刚 2004 爆炸与冲击 24 419]
[7] Gui Y L, Liu C L, Wang Y P, Sun C W 2005 Detonation Shock Waves 25 183 (in Chinese) [桂毓林, 刘仓理, 王彦平, 孙承纬 2005 爆轰波与冲击波 25 183]
[8] Smith R F, Eggert J H, Jankowski A, Celliers P M, Edwards M J, Gupta Y M, Asay J R, Collins G W 2007 Phys. Rev. Lett. 98 065701
[9] Harlow F H, Amsden A A 1971 Los Alamos Scientific Laboratory Report No. LA-4700
[10] Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: Defense Industry Press) (in Chinese) [李维新 2003 一维不定常流与冲击波 (北京: 国防工业出版社)]
[11] Lindl J 1995 Phys. Plasmas 2 3933
[12] Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Acta Phys. Sin. 60 025202 (in Chinese) [王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤 2011 60 025202]
[13] Wang F, Peng X S, Liu S Y, Jiang X H, Xu T, Ding Y K, Zhang B H 2011 Acta Phys. Sin. 60 115203 (in Chinese) [王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉 2011 60 115203]
[14] Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916
[15] Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D: Appl. Phys. 38 733
[16] Rothman S D, Maw J 2006 J. Phys. IV France 134 745
[17] Kerley G I 1987 Int. J. Impact Eng. 5 441
[18] Johnson J D 1994 Los Alamos Scientific Laboratory Report No. LA-UR-94-1451
[19] Xue Q X 2014 Ph. D. Dissertation (Mianyang: China Academic Engineering of Physics) ( in Chinese) [薛全喜 2014 博士学位论文 (绵阳: 中国工程物理研究院)]
[20] Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521
Catalog
Metrics
- Abstract views: 6484
- PDF Downloads: 742
- Cited By: 0