-
In this paper, the time-dependent wave-packet method is used to study the three-dimensional dynamical properties of the H+Li2 reactive system on its ground state potential energy surface. The reaction probabilities for J=0 with different vibrational quantum numbers v=0, 1, 2, 3 and for v=0 with different total rotational quantum numbers, integral cross sections and rate constants are calculated for collision energies in a range between 0 and 0.4 eV. The features of the reaction probabilities and reaction threshold energy are analyzed. The results show that the vibrational excitation has a certain inhibitory effect on the reaction process and the reaction threshold energy increases with the increase of J. These phenomena are associated with the type of the exothermic reaction of the reactive system. The influence of the collision energy on the integral cross sections and the effect of the temperature on reaction rate constants are also investigated.
-
Keywords:
- time dependent quantum scattering theory /
- reaction probability /
- integral cross section /
- H+Li2
[1] Lee Y T, Gordon R J, Herschbach D R 1971 J. Chem. Phys. 54 2410
[2] Wu C H, Ihle H R 1977 J. Chem. Phys. 66 4356
[3] Vezin B, Dugourd Ph, Rayane D, Labastie P, Broyer M 1993 Chem. Phys. Lett. 202 209
[4] Antoine R, Dugourd Ph, Rayane D, Allouche A R, Aubert-Frécon M, Broyer M 1996 Chem. Phys. Lett. 261 670
[5] Shukla C P, Sathyamurthy N, Khuller I P 1987 J. Chem. Phys. 87 3251
[6] Kim S K, Jeoung S C, Tan A L C, Herschbach D R 1991 J. Chem. Phys. 95 3854
[7] Guosen Y, Hui X, Xie D 1997 Sci. China 40 342
[8] Maniero A M, Acioli P H, e Silva G M, Gargano R 2010 Chem. Phys. Lett. 490 123
[9] Vila H V R, Leal L A, Martins J B L, Skouteris D, e Silva G M, Gargano R 2012 J. Chem. Phys. 136 134319
[10] Song Y Z, Li Y Q, Gao S B, Meng Q T 2014 Eur. Phys. J. D 68 3
[11] da Cunha W F, Leal L A, da Cunha T F, e Silva G M, Gargano R, Martins J B L 2014 J. Mol. Model 20 2315
[12] Kuppermann A, Schatz G C 1975 J. Chem. Phys. 62 2502
[13] Redmon M J, Wyatt R E 1979 Chem. Phys. Lett. 63 209
[14] Hutson J M, Schwartz C 1983 J. Chem. Phys. 79 5179
[15] Schatz G C, Kuppermann A 1976 J. Chem. Phys. 65 4642
[16] Kuppermann A, Kaye J A, Dwyer J P 1980 Chem. Phys. Lett. 74 257
[17] Clary D C 1991 J. Chem. Phys. 95 7298
[18] Deng C H, Feng D C, Cai Z T 1994 Sci. China B 37 1025
[19] Schnieder L, Seekamp-Rahn K, Borkowski J, Wrede E, Welge K H, Aoiz F J, Bañiares L, D'Mello M J, Herrero V J, Rábanos V S, Wyatt R E 1995 Science 269 207
[20] Zhang D H, Zhang J Z H 1993 J. Chem. Phys. 99 5615
[21] Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese) [段志欣, 邱明辉, 姚翠霞 2014 63 063402]
[22] Wang Y H, Xiao C Y, Deng K M, Lu R F 2014 Chin. Phys. B 23 043401
[23] Xie T X, Zhang Y, Zhao M Y, Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
[24] Liu X G, Zhang Q G, Zhang Y C, Wang M L, Zhang Z H 2004 Chin. Phys. 13 1013
[25] Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201
[26] Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[27] Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967
[28] Meijer A J H M, Goldfield E M, Gray S K, Balint-Kurti G G 1998 Chem. Phys. Lett. 293 270
[29] Beärda R A, van Hemert M C, van Dishoeck E F 1992 J. Chem. Phys. 97 8240
[30] Song Y Z, Varandas A J C 2011 J. Phys. Chem. A 115 5274
[31] Varandas A J C 1989 J. Chem. Phys. 90 4379
[32] Sun Z P, Zhang C F, Lin S Y, Zheng Y J, Meng Q T, Bian W S 2013 J. Chem. Phys. 139 014306
[33] Wei W, Gao S B, Sun Z P, Song Y Z, Meng Q T 2014 Chin. Phys. B 23 073101
-
[1] Lee Y T, Gordon R J, Herschbach D R 1971 J. Chem. Phys. 54 2410
[2] Wu C H, Ihle H R 1977 J. Chem. Phys. 66 4356
[3] Vezin B, Dugourd Ph, Rayane D, Labastie P, Broyer M 1993 Chem. Phys. Lett. 202 209
[4] Antoine R, Dugourd Ph, Rayane D, Allouche A R, Aubert-Frécon M, Broyer M 1996 Chem. Phys. Lett. 261 670
[5] Shukla C P, Sathyamurthy N, Khuller I P 1987 J. Chem. Phys. 87 3251
[6] Kim S K, Jeoung S C, Tan A L C, Herschbach D R 1991 J. Chem. Phys. 95 3854
[7] Guosen Y, Hui X, Xie D 1997 Sci. China 40 342
[8] Maniero A M, Acioli P H, e Silva G M, Gargano R 2010 Chem. Phys. Lett. 490 123
[9] Vila H V R, Leal L A, Martins J B L, Skouteris D, e Silva G M, Gargano R 2012 J. Chem. Phys. 136 134319
[10] Song Y Z, Li Y Q, Gao S B, Meng Q T 2014 Eur. Phys. J. D 68 3
[11] da Cunha W F, Leal L A, da Cunha T F, e Silva G M, Gargano R, Martins J B L 2014 J. Mol. Model 20 2315
[12] Kuppermann A, Schatz G C 1975 J. Chem. Phys. 62 2502
[13] Redmon M J, Wyatt R E 1979 Chem. Phys. Lett. 63 209
[14] Hutson J M, Schwartz C 1983 J. Chem. Phys. 79 5179
[15] Schatz G C, Kuppermann A 1976 J. Chem. Phys. 65 4642
[16] Kuppermann A, Kaye J A, Dwyer J P 1980 Chem. Phys. Lett. 74 257
[17] Clary D C 1991 J. Chem. Phys. 95 7298
[18] Deng C H, Feng D C, Cai Z T 1994 Sci. China B 37 1025
[19] Schnieder L, Seekamp-Rahn K, Borkowski J, Wrede E, Welge K H, Aoiz F J, Bañiares L, D'Mello M J, Herrero V J, Rábanos V S, Wyatt R E 1995 Science 269 207
[20] Zhang D H, Zhang J Z H 1993 J. Chem. Phys. 99 5615
[21] Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese) [段志欣, 邱明辉, 姚翠霞 2014 63 063402]
[22] Wang Y H, Xiao C Y, Deng K M, Lu R F 2014 Chin. Phys. B 23 043401
[23] Xie T X, Zhang Y, Zhao M Y, Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
[24] Liu X G, Zhang Q G, Zhang Y C, Wang M L, Zhang Z H 2004 Chin. Phys. 13 1013
[25] Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201
[26] Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[27] Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967
[28] Meijer A J H M, Goldfield E M, Gray S K, Balint-Kurti G G 1998 Chem. Phys. Lett. 293 270
[29] Beärda R A, van Hemert M C, van Dishoeck E F 1992 J. Chem. Phys. 97 8240
[30] Song Y Z, Varandas A J C 2011 J. Phys. Chem. A 115 5274
[31] Varandas A J C 1989 J. Chem. Phys. 90 4379
[32] Sun Z P, Zhang C F, Lin S Y, Zheng Y J, Meng Q T, Bian W S 2013 J. Chem. Phys. 139 014306
[33] Wei W, Gao S B, Sun Z P, Song Y Z, Meng Q T 2014 Chin. Phys. B 23 073101
Catalog
Metrics
- Abstract views: 5709
- PDF Downloads: 152
- Cited By: 0