-
Finite-time stable theorem about fractional system and finite-time synchronizing fractional chaotic system are studied in this paper. A finite-time stable theorem is proposed and proved according to the properties of fractional equation. Using this theorem, fractional super chaotic Lorenz systems is synchronized in finite-time. Numerical simulation certifies the effectiveness of the theorem proposed in this paper.
-
Keywords:
- fractional /
- super chaotic Lorenz system /
- stable /
- finite-time synchronizing
[1] Chen J R, Tao R J 2001 Journal of Shanghai University 5 292
[2] Chen W,Zhang X D, Korosak D. 2010 Int. J. Nonlin. Sci. Num. 11 3
[3] Li Z B 2010 Int. J. Nonlin. Sci. Num. 11 335
[4] Li Z B, He J H 2010 Mathematical & Computational Applications 15 970
[5] Cui B T, Ji Y, Qiu F 2009 Chin. Phys. B 18 5203
[6] Wu X J, Lu H T, Shen S L 2009 Phys. Lett. A 373 2329
[7] Mohammad Saleh Tavazoei, Mohammad Haeri 2008 Physica A 387 57
[8] Liu C X 2004 Chaos Solitons and Fractals 22 1031
[9] Jia H Y, Chen Z Q, Yuan Z Z 2010 Chin. Phys.B 19 507
[10] Hu J B, Han Y, Zhao L D 2008 Acta Phys.Sin.57 7522 (in Chinese) [胡建兵、韩 焱、赵灵冬 2008 57 7522]
[11] Zhang R X, Yang S P 2009 Journal of Hebei Normal University 33 37 (in Chinese) [张若洵、杨世平 2009 河北师范大学学报 33 37]
[12] Vedat Suat Erturk,Shaher Momani,Zaid Odibat 2008 J. Cnsns 1642
[13] Liu Y F, Yang X G, Miu D, Yuan R P 2007 Acta Phys. Sin. 56 6250 (in Chinese) [刘云峰、杨小冈、缪 栋、袁润平 2007 56 6250]
[14] Aghababa MP, Khanmohammadi S, Alizadeh G 2011 Applied Mathematical Modeling 35 3080
[15] Liu D, Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese)[刘丁、闫晓妹 2009 58 3747]
[16] Podlubny I 1999 Fractional differential equations (San Diego : Academic Press) p18
[17] He J H 2011 Thermal Science 15 145
[18] Matignon D. 1996 IMACS, IEEE-SMC, Lille (France)
-
[1] Chen J R, Tao R J 2001 Journal of Shanghai University 5 292
[2] Chen W,Zhang X D, Korosak D. 2010 Int. J. Nonlin. Sci. Num. 11 3
[3] Li Z B 2010 Int. J. Nonlin. Sci. Num. 11 335
[4] Li Z B, He J H 2010 Mathematical & Computational Applications 15 970
[5] Cui B T, Ji Y, Qiu F 2009 Chin. Phys. B 18 5203
[6] Wu X J, Lu H T, Shen S L 2009 Phys. Lett. A 373 2329
[7] Mohammad Saleh Tavazoei, Mohammad Haeri 2008 Physica A 387 57
[8] Liu C X 2004 Chaos Solitons and Fractals 22 1031
[9] Jia H Y, Chen Z Q, Yuan Z Z 2010 Chin. Phys.B 19 507
[10] Hu J B, Han Y, Zhao L D 2008 Acta Phys.Sin.57 7522 (in Chinese) [胡建兵、韩 焱、赵灵冬 2008 57 7522]
[11] Zhang R X, Yang S P 2009 Journal of Hebei Normal University 33 37 (in Chinese) [张若洵、杨世平 2009 河北师范大学学报 33 37]
[12] Vedat Suat Erturk,Shaher Momani,Zaid Odibat 2008 J. Cnsns 1642
[13] Liu Y F, Yang X G, Miu D, Yuan R P 2007 Acta Phys. Sin. 56 6250 (in Chinese) [刘云峰、杨小冈、缪 栋、袁润平 2007 56 6250]
[14] Aghababa MP, Khanmohammadi S, Alizadeh G 2011 Applied Mathematical Modeling 35 3080
[15] Liu D, Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese)[刘丁、闫晓妹 2009 58 3747]
[16] Podlubny I 1999 Fractional differential equations (San Diego : Academic Press) p18
[17] He J H 2011 Thermal Science 15 145
[18] Matignon D. 1996 IMACS, IEEE-SMC, Lille (France)
Catalog
Metrics
- Abstract views: 9916
- PDF Downloads: 1011
- Cited By: 0