-
Cold polar molecules have long coherence time and strong dipole-dipole interaction and thus are regarded as a promising quantum carrier for quantum information processing. In this paper, by employing the pendular states of polar molecules as qubit, we investigate the properties of three types of tripartite quantum correlations for three linear polar molecules and numerically analyze the relations of tripartite negativity, measurement-induced disturbance (MID), and tripartite quantum discord (TQD) to three dimensionless reduced variables that relate to external field strength, dipole moment, rotational constant, dipole-dipole coupling, and temperature. The result shows that if the values of the other parameters are fixed, the three quantum correlations decrease with the increase of the field strength, and the three quantum correlations first increase to their respective maxima and then diminish gradually as the dipole-dipole coupling becomes larger. Moreover, as the temperature increases, both tripartite negativity and TQD become small, but with the variation of temperature there exhibit different evolution tendencies for MID between the influence of the electric field strength and that of the dipole-dipole coupling. In addition, the three quantum correlations of polar molecules in pendular state can be manipulated by tuning the external electric field strength, dipole-dipole coupling, and temperature.
-
Keywords:
- pendular state /
- tripartite negativity /
- measurement-induced disturbance /
- tripartite quantum discord
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517
[3] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314
[5] Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824
[6] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[7] Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022
[8] Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275
[9] Vedral V 2002 Rev. Mod. Phys. 74 197
[10] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[11] Henderson L, Vedral V 2001 J. Phys. A 34 6899
[12] Luo S 2008 Phys. Rev. A 77 022301
[13] Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502
[14] Luo S, Fu S 2010 Phys. Rev. A 82 034302
[15] Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501
[16] Giorgi G L, Bellomo B, Galve F, Zambrini R 2011 Phys. Rev. Lett. 107 190501
[17] Buscemi F, Bordone P 2013 Phys. Rev. A 87 042310
[18] Werlang T, Souza S, Fanchini F F, Boas C J V 2009 Phys. Rev. A 80 024103
[19] Wang B, Xu Z Y, Chen Z Q, Feng M 2010 Phys. Rev. A 81 014101
[20] Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504
[21] Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 62 130305]
[22] Guo H, Liu J M, Zhang C J, Oh C H 2012 Quantum Inf. Comput. 12 0677
[23] Hu M L, Fan H 2012 Ann. Phys. 327 851
[24] He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 62 180301]
[25] Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655
[26] Shen C G, Zhang G F, Fan K M, Zhu H J 2014 Chin. Phys. B 23 050310
[27] Qiu L, Ye B 2014 Chin. Phys. B 23 050304
[28] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, Guo G C 2010 Nat. Commun. 1 7
[29] Auccaise R, Celeri L C, Soares-Pinto D O, de Azevedo E R, Maziero J, Souza A M, Bonagamba T J, Sarthour R S, Oliveira I S, Serra R M 2011 Phys. Rev. Lett. 107 140403
[30] Rong X, Jin F, Wang Z, Geng J, Ju C, Wang Y, Zhang R, Duan C, Shi M, Du J 2013 Phys. Rev. B 88 054419
[31] Krems R, Friedrich B, Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor Francis)
[32] Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049
[33] Dulieu O, Gabbanini C 2009 Rep. Prog. Phys. 72 086401
[34] Ulmanis J, Deiglmayr J, Repp M, Wester R, Weidemuller M 2012 Chem. Rev. 112 4890
[35] Deng L Z, Liang Y, Gu Z X, Hou S Y, Li S Q, Xia Y, Yin J P 2011 Phys. Rev. Lett. 106 140401
[36] DeMille D 2002 Phys. Rev. Lett. 88 067901
[37] Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636
[38] Tordrup K, Negretti A, Molmer K 2008 Phys. Rev. Lett. 101 040501
[39] Chen Q, Yang W, Feng M 2012 Phys. Rev. A 86 045801
[40] Charron E, Milman P, Keller A, Atabek O 2007 Phys. Rev. A 75 033414
[41] Kuznetsova E, Gacesa M, Yelin S F, Cote R 2010 Phys. Rev. A 81 030301
[42] Wei Q, Kais S, Friedrich B, Herschbach D 2011 J. Chem. Phys. 134 124107
[43] Zhu J, Kais S, Wei Q, Herschbach D, Friedrich B 2013 J. Chem. Phys. 138 024104
[44] Sabin C, Garcia-Alcaine G 2008 Eur. Phys. J. D 48 43
-
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517
[3] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314
[5] Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824
[6] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[7] Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022
[8] Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275
[9] Vedral V 2002 Rev. Mod. Phys. 74 197
[10] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[11] Henderson L, Vedral V 2001 J. Phys. A 34 6899
[12] Luo S 2008 Phys. Rev. A 77 022301
[13] Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502
[14] Luo S, Fu S 2010 Phys. Rev. A 82 034302
[15] Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501
[16] Giorgi G L, Bellomo B, Galve F, Zambrini R 2011 Phys. Rev. Lett. 107 190501
[17] Buscemi F, Bordone P 2013 Phys. Rev. A 87 042310
[18] Werlang T, Souza S, Fanchini F F, Boas C J V 2009 Phys. Rev. A 80 024103
[19] Wang B, Xu Z Y, Chen Z Q, Feng M 2010 Phys. Rev. A 81 014101
[20] Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504
[21] Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 62 130305]
[22] Guo H, Liu J M, Zhang C J, Oh C H 2012 Quantum Inf. Comput. 12 0677
[23] Hu M L, Fan H 2012 Ann. Phys. 327 851
[24] He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 62 180301]
[25] Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655
[26] Shen C G, Zhang G F, Fan K M, Zhu H J 2014 Chin. Phys. B 23 050310
[27] Qiu L, Ye B 2014 Chin. Phys. B 23 050304
[28] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, Guo G C 2010 Nat. Commun. 1 7
[29] Auccaise R, Celeri L C, Soares-Pinto D O, de Azevedo E R, Maziero J, Souza A M, Bonagamba T J, Sarthour R S, Oliveira I S, Serra R M 2011 Phys. Rev. Lett. 107 140403
[30] Rong X, Jin F, Wang Z, Geng J, Ju C, Wang Y, Zhang R, Duan C, Shi M, Du J 2013 Phys. Rev. B 88 054419
[31] Krems R, Friedrich B, Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor Francis)
[32] Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049
[33] Dulieu O, Gabbanini C 2009 Rep. Prog. Phys. 72 086401
[34] Ulmanis J, Deiglmayr J, Repp M, Wester R, Weidemuller M 2012 Chem. Rev. 112 4890
[35] Deng L Z, Liang Y, Gu Z X, Hou S Y, Li S Q, Xia Y, Yin J P 2011 Phys. Rev. Lett. 106 140401
[36] DeMille D 2002 Phys. Rev. Lett. 88 067901
[37] Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636
[38] Tordrup K, Negretti A, Molmer K 2008 Phys. Rev. Lett. 101 040501
[39] Chen Q, Yang W, Feng M 2012 Phys. Rev. A 86 045801
[40] Charron E, Milman P, Keller A, Atabek O 2007 Phys. Rev. A 75 033414
[41] Kuznetsova E, Gacesa M, Yelin S F, Cote R 2010 Phys. Rev. A 81 030301
[42] Wei Q, Kais S, Friedrich B, Herschbach D 2011 J. Chem. Phys. 134 124107
[43] Zhu J, Kais S, Wei Q, Herschbach D, Friedrich B 2013 J. Chem. Phys. 138 024104
[44] Sabin C, Garcia-Alcaine G 2008 Eur. Phys. J. D 48 43
Catalog
Metrics
- Abstract views: 5378
- PDF Downloads: 463
- Cited By: 0