-
Pulse train (PT) control technique is a novel discrete control technique for switching converter operating in discontinuous conduction mode (DCM). When the inductive energy storage is not zero, the low-frequency oscillation phenomenon may occur in PT controlled switching converters operating in continuous conduction mode (CCM). The low-frequency oscillation phenomenon will seriously affect the steady and transient performances of switching converters. In order to solve this problem, valley current mode pulse train (VCM-PT) control technique, which extends the application range from DCM to CCM, is proposed in this paper. The energy model of VCM-PT controlled switching converter is derived and compared with the energy model of PT controlled switching converter. Result indicates that the VCM-PT controlled CCM switching converter has the same energy transfer mode as the traditional PT controlled DCM switching converter and can eliminate fundamentally the low-frequency oscillation phenomenon.
-
Keywords:
- switching converter /
- pulse train /
- continuous conduction mode /
- energy model
[1] Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506
[2] Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509
[3] Telefus M, Shteynberg A, Ferdowsi M, Emadi A 2004 IEEE Trans. Power Electron. 19 757
[4] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Aerosp. Electron. 41 181
[5] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Power Electron. 20 798
[6] Qin M, Xu J P 2009 Acta Phys. Sin. 58 7603 (in Chinese)[秦明, 许建平 2009 58 7603]
[7] Qin M, Xu J P, Gao Y, Wang J P 2012 Acta Phys. Sin. 61 030204 (in Chinese)[秦明, 许建平, 高玉, 王金平 2012 61 030204]
[8] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese)[沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[9] Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese)[王金平, 许建平, 周国华, 米长宝, 秦明 2011 60 048402]
[10] Luo P, Zhen S W, Li Z J, Zhang B 2009 Transactions of China Electrotechnical Society. 24 67 (in Chinese)[罗萍, 甄少伟, 李肇基, 张波 2009 电工技术学报 24 67]
[11] Qin M, Xu J P 2010 IEEE Trans. Ind. Electron. 57 3497
[12] Qin M, Xu J P 2013 IEEE Trans. Ind. Electron. 60 1819
[13] Lei B, Xiao G C, Wu X L 2013 Chin. Phys. B 22 060509
-
[1] Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506
[2] Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509
[3] Telefus M, Shteynberg A, Ferdowsi M, Emadi A 2004 IEEE Trans. Power Electron. 19 757
[4] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Aerosp. Electron. 41 181
[5] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Power Electron. 20 798
[6] Qin M, Xu J P 2009 Acta Phys. Sin. 58 7603 (in Chinese)[秦明, 许建平 2009 58 7603]
[7] Qin M, Xu J P, Gao Y, Wang J P 2012 Acta Phys. Sin. 61 030204 (in Chinese)[秦明, 许建平, 高玉, 王金平 2012 61 030204]
[8] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese)[沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[9] Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese)[王金平, 许建平, 周国华, 米长宝, 秦明 2011 60 048402]
[10] Luo P, Zhen S W, Li Z J, Zhang B 2009 Transactions of China Electrotechnical Society. 24 67 (in Chinese)[罗萍, 甄少伟, 李肇基, 张波 2009 电工技术学报 24 67]
[11] Qin M, Xu J P 2010 IEEE Trans. Ind. Electron. 57 3497
[12] Qin M, Xu J P 2013 IEEE Trans. Ind. Electron. 60 1819
[13] Lei B, Xiao G C, Wu X L 2013 Chin. Phys. B 22 060509
Catalog
Metrics
- Abstract views: 6592
- PDF Downloads: 590
- Cited By: 0