搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散移相控制全桥DC-DC变换器的能量迭代建模及多周期态研究

沙金 许建平 陈一鸣

引用本文:
Citation:

离散移相控制全桥DC-DC变换器的能量迭代建模及多周期态研究

沙金, 许建平, 陈一鸣

The study of energy model and multi-period of discrete phase shift control technique for full-bridge DC-DC converter

Sha Jin, Xu Jian-Ping, Chen Yi-Ming
PDF
导出引用
  • 针对移相全桥DC-DC变换器, 提出一种离散移相控制方法. 通过建立移相全桥DC-DC变换器输出滤波电容能量模型, 分析了离散移相控制全桥DC-DC变换器的能量迭代过程和控制原理. 通过对离散移相控制全桥DC-DC变换器能量迭代过程的研究, 揭示了其多周期态工作特性. 与传统PWM移相全桥DC-DC变换器的仿真对比分析结果表明, 离散移相控制全桥DC-DC变换器具有控制环路简单可靠、瞬态响应速度快等优点.
    Phase-shift full-bridge (PSFB) DC-DC converter benefits from high efficiency by zero-voltage switching turn-on of all switches without any additional auxiliary circuit, and PSFB DC-DC converter has been widely used in high power applications. In this paper, the operating mode of PSFB DC-DC converter is studied, and the energy iteration model of PSFB DC-DC converter is established. The discrete phase shift (DPS) control technique for PSFB DC-DC converter is proposed and discussed. Unlike the conventional PWM PSFB control technique, the DPS control technique uses two preset phase shift times tpsH and tpsL as control variables where 0tpsHtpsL ≤Tw with Tw being the switching period. When output voltage is lower than the reference voltage, phase shift time tpsH is selected, and a large duty cycle DH is obtained on the secondary side, which makes output voltage increase. Similarly, when output voltage is higher than the reference voltage, phase shift time tpsL is selected, and a small duty cycle DL is obtained on the secondary side, which makes output voltage decrease. With the energy iteration model, the energy iteration process is clearly revealed, steady-state and transient performances are studied. From the analysis results it can be known that the DPS controlled PSFB DC-DC converter always operates in a multi-periodic state. The simulation reasults show that the proposed control technique has an advantage over the conventional PWM PSFB control technique in simple design, great robust and excellent transient performance.
    • 基金项目: 国家自然科学基金(批准号: 51177140)、中央高校基本科研业务费专项资金 (批准号: 2682013ZT20)和2013年西南交通大学优秀博士学位论文培育项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51177140), the Fundamental Research Funds for the Central Universitie, China (Grant No. 2682013ZT20) and 2013 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University.
    [1]

    Hua G, Lee F C 1995 IEEE Trans. Ind. Electron. 42 595

    [2]

    Bellar M D, Wu T S, Tchamdjou A, Mahdavi J, Ehsani M 1998 IEEE Trans. Ind. Electron. 34 847

    [3]

    Smith K M, Smedley K M 1997 IEEE Trans. Power Electron. 12 376

    [4]

    Ming X, Yuancheng R, Zhou J, Lee F C 2005 IEEE Trans. Power Electron. 20 997

    [5]

    Yungtaek J, Jovanovic M M, Yu M C 2003 IEEE Trans. Power Electron. 18 1122

    [6]

    Gwan B K, Gun W M, Myung J Y 2005 IEEE Trans. Ind. Electron. 52 228

    [7]

    Lin R L, Hong Z C 2012 Industry Applications Society Annual Meeting (IAS) Las Vegas, NV, Oct. 7-11, 2012 p1

    [8]

    Guo Z, Sha D, Liao X, Luo J 2014 IEEE Trans. Power Electron. 29 5081

    [9]

    Hsieh Y C, Huang C S 2011 IET Power Electron. 4 242

    [10]

    Yadav G N B, Narasamma N L 2014 IEEE Trans. Power Electron. 29 4538

    [11]

    Vlatkovic V, Sabate J A, Ridley R B, Lee F C, Cho B H 1992 IEEE Trans. Power Electron. 7 128

    [12]

    Schutten M J, Torrey D A 2003 IEEE Trans. Power Electron. 18 659

    [13]

    Yin L L, Chen Q H, Peng B, Wang J, Ruan X B 2007 Proc. IEEE PESC Orlando, FL, June 17-21, 2009 p1721

    [14]

    Young D K, Kyu M C, Duk Y K, Gun W M 2013 IEEE Trans. Power Electron. 28 3308

    [15]

    Jong W K, Duk Y K, Chong E K, Gun W M 2014 IEEE Trans. Power Electron. 29 1562

    [16]

    Li X, Li Y 2014 IEEE Trans. Power Electron. 29 2661

    [17]

    Lei B, Xiao G C, Wu X L, Qi Y R 2011 Acta Phys. Sin. 60 090501 (in Chinese) [雷博, 肖国春, 吴旋律, 齐元瑞 2011 60 090501]

    [18]

    Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 63 010505]

    [19]

    Lei B, Xiao G C, Wu X L 2013 Chin. Phys. B 22 060509

    [20]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 120504

    [21]

    Sha J, Xu J P, Liu S H, Zhong S 2014 Acta Phys. Sin. 63 098401 (in Chinese) [沙金, 许建平, 刘姝晗, 钟曙 2014 63 098401]

  • [1]

    Hua G, Lee F C 1995 IEEE Trans. Ind. Electron. 42 595

    [2]

    Bellar M D, Wu T S, Tchamdjou A, Mahdavi J, Ehsani M 1998 IEEE Trans. Ind. Electron. 34 847

    [3]

    Smith K M, Smedley K M 1997 IEEE Trans. Power Electron. 12 376

    [4]

    Ming X, Yuancheng R, Zhou J, Lee F C 2005 IEEE Trans. Power Electron. 20 997

    [5]

    Yungtaek J, Jovanovic M M, Yu M C 2003 IEEE Trans. Power Electron. 18 1122

    [6]

    Gwan B K, Gun W M, Myung J Y 2005 IEEE Trans. Ind. Electron. 52 228

    [7]

    Lin R L, Hong Z C 2012 Industry Applications Society Annual Meeting (IAS) Las Vegas, NV, Oct. 7-11, 2012 p1

    [8]

    Guo Z, Sha D, Liao X, Luo J 2014 IEEE Trans. Power Electron. 29 5081

    [9]

    Hsieh Y C, Huang C S 2011 IET Power Electron. 4 242

    [10]

    Yadav G N B, Narasamma N L 2014 IEEE Trans. Power Electron. 29 4538

    [11]

    Vlatkovic V, Sabate J A, Ridley R B, Lee F C, Cho B H 1992 IEEE Trans. Power Electron. 7 128

    [12]

    Schutten M J, Torrey D A 2003 IEEE Trans. Power Electron. 18 659

    [13]

    Yin L L, Chen Q H, Peng B, Wang J, Ruan X B 2007 Proc. IEEE PESC Orlando, FL, June 17-21, 2009 p1721

    [14]

    Young D K, Kyu M C, Duk Y K, Gun W M 2013 IEEE Trans. Power Electron. 28 3308

    [15]

    Jong W K, Duk Y K, Chong E K, Gun W M 2014 IEEE Trans. Power Electron. 29 1562

    [16]

    Li X, Li Y 2014 IEEE Trans. Power Electron. 29 2661

    [17]

    Lei B, Xiao G C, Wu X L, Qi Y R 2011 Acta Phys. Sin. 60 090501 (in Chinese) [雷博, 肖国春, 吴旋律, 齐元瑞 2011 60 090501]

    [18]

    Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 63 010505]

    [19]

    Lei B, Xiao G C, Wu X L 2013 Chin. Phys. B 22 060509

    [20]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 120504

    [21]

    Sha J, Xu J P, Liu S H, Zhong S 2014 Acta Phys. Sin. 63 098401 (in Chinese) [沙金, 许建平, 刘姝晗, 钟曙 2014 63 098401]

  • [1] 郑连清, 彭一. 电压型buck-boost变换器的混沌控制.  , 2016, 65(22): 220502. doi: 10.7498/aps.65.220502
    [2] 王发强, 李晶, 马西奎. 电压控制正极性输出罗变换器的改进平均模型建模及稳定性分析.  , 2015, 64(21): 210506. doi: 10.7498/aps.64.210506
    [3] 李先锐, 朱彦丽. DC-DC变换器的信息熵分析.  , 2014, 63(23): 238401. doi: 10.7498/aps.63.238401
    [4] 沙金, 许建平, 刘姝晗, 钟曙. 谷值电流型脉冲序列控制开关变换器及其能量建模研究.  , 2014, 63(9): 098401. doi: 10.7498/aps.63.098401
    [5] 吴旋律, 肖国春, 雷博. 数字控制单相全桥电压型逆变电路的改进离散迭代模型.  , 2013, 62(5): 050503. doi: 10.7498/aps.62.050503
    [6] 徐红梅, 金永镐, 郭树旭. 电压控制不连续导电模式DC-DC变换器的熵特性研究.  , 2013, 62(24): 248401. doi: 10.7498/aps.62.248401
    [7] 秦明, 许建平, 高玉, 王金平. 基于电流基准的开关变换器脉冲序列控制方法.  , 2012, 61(3): 030204. doi: 10.7498/aps.61.030204
    [8] 雷博, 肖国春, 吴旋律, 齐元瑞. 单相全桥DC-AC电压逆变电路数字控制中的振荡现象分析.  , 2011, 60(9): 090501. doi: 10.7498/aps.60.090501
    [9] 来新泉, 李祖贺, 袁冰, 王慧, 叶强, 赵永瑞. 基于自适应斜坡补偿的双环电流模DC/DC混沌控制.  , 2010, 59(4): 2256-2263. doi: 10.7498/aps.59.2256
    [10] 王永, 关淼, 张磊. 一种三相四桥臂拓扑结构的新型矩阵变换器.  , 2010, 59(2): 867-876. doi: 10.7498/aps.59.867
    [11] 周国华, 许建平, 包伯成. 峰值/谷值电流型控制开关DC-DC变换器的对称动力学现象分析.  , 2010, 59(4): 2272-2280. doi: 10.7498/aps.59.2272
    [12] 秦明, 许建平. 开关变换器多级脉冲序列控制研究.  , 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [13] 王学梅, 张 波, 丘东元. 不连续导电模式DC-DC变换器的倍周期分岔机理研究.  , 2008, 57(5): 2728-2736. doi: 10.7498/aps.57.2728
    [14] 王学梅, 张 波, 丘东元, 陈良刚. DC-DC变换器的符号时间序列描述及模块熵分析.  , 2008, 57(10): 6112-6119. doi: 10.7498/aps.57.6112
    [15] 张笑天, 马西奎, 张 浩. 数字控制DC-DC Buck变换器中低频振荡现象分析.  , 2008, 57(10): 6174-6181. doi: 10.7498/aps.57.6174
    [16] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化.  , 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [17] 杨 汝, 张 波. DC-DC buck变换器时间延迟反馈混沌化控制.  , 2007, 56(7): 3789-3795. doi: 10.7498/aps.56.3789
    [18] 姚 远, 石 寅. 射频能量AC/DC电荷泵的MOS实现研究.  , 2005, 54(5): 2424-2428. doi: 10.7498/aps.54.2424
    [19] 赵益波, 罗晓曙, 方锦清, 汪秉宏. 电压反馈型DC-DC变换器的稳定性研究.  , 2005, 54(11): 5022-5026. doi: 10.7498/aps.54.5022
    [20] 罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群. DC-DC buck变换器的分岔行为及混沌控制研究.  , 2003, 52(1): 12-17. doi: 10.7498/aps.52.12
计量
  • 文章访问数:  6098
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-29
  • 修回日期:  2014-12-09
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map