-
The machined workpiece has high mechanical storage energy because of the defect structures formed in nanocutting and their evolution from high energy state to the low energy state by adjusting atom positions automatically is called surface-energy aging. The effect of surface-energy aging on the surface properties of monocrystalline silicon workpiece is analyzed by Monte Carlo simulations of machined surface. It is shown that the surface-energy aging effect can increase the surface roughness and the degree of order of damaged layer, however reduce the residual stress and the average potential energy of workpiece. Amorphous silicon structure in metamorphic layer decreases and recrystallization phenomenon occurs in the surface-energy aging process. It is found that some β-Si phase structures and BCT5-si phase structures transform into the diamond cubic structure of Si in the surface-energy aging process. Surface-energy aging effect has a great influence on the surface properties of the machined surface of monocrystalline silicon workpiece, and can improve the mechanical properties of micro/nanostructures.
-
Keywords:
- Monte Carlo simulation /
- nanomachining /
- surface properties /
- performance evolution
[1] Ye Y Y, Biswas R, Morris J R, Bastawros A, Chandra A 2003 Nanotechnology 14 390
[2] Wang H, Liu G Q, Qin X G 2008 Acta Metall. Sin. 44 13 (in Chinese) [王浩, 刘国权, 秦湘阁 2008 金属学报 44 13]
[3] Wang H, Liu G Q, Luan J H, Yue J C, Qin X G 2009 Acta Phys. Sin. 58 S132 (in Chinese) [王浩, 刘国权, 栾军华, 岳景朝, 秦湘阁 2009 58 S132]
[4] Wang H, Liu G Q, Qin X G 2009 Rare Metal Mat. Eng. 38 126 (in Chinese) [王浩, 刘国权, 秦湘阁 2009 稀有金属材料与工程 38 126]
[5] Zheng X P, Zhang P F, Liu J, He D Y, Ma J T 2004 Acta Phys. Sin. 53 2687 (in Chinese) [郑小平, 张佩峰, 刘军, 贺德衍, 马健泰 2004 53 2687]
[6] Zheng X P, Zhang P F 2010 Comp. Mater. Sci. 50 6
[7] Wang J C, Du G, Wei K L, Zhang X, Liu X Y 2012 Chin. Phys. B 21 117308
[8] Komanduri R, Narulkar R, Raff L M 2004 Philos. Mag. 84 1155
[9] Komanduri R, Raff L M 2002 Phil. Mag. Lett. 82 247
[10] Narulkar R, Raff L M, Komanduri R 2005 Proc. I. Mech. Eng. Part N: J. Nanoeng. Nanosyst. 218 7
[11] Fang F Z, Wu H, Zhou W, Hu X T 2007 J. Mater. Process. Technol. 184 407
[12] Piltz R O, Maclean J R, Clark S J, Ackland G J, Hatton P D, Crain J 1995 Phys. Rev. B 52 4072
[13] Si L N, Guo D, Luo J B 2012 Acta Phys. Sin. 61 168103 (in Chinese) [司丽娜, 郭旦, 雒建斌 2012 61 168103]
-
[1] Ye Y Y, Biswas R, Morris J R, Bastawros A, Chandra A 2003 Nanotechnology 14 390
[2] Wang H, Liu G Q, Qin X G 2008 Acta Metall. Sin. 44 13 (in Chinese) [王浩, 刘国权, 秦湘阁 2008 金属学报 44 13]
[3] Wang H, Liu G Q, Luan J H, Yue J C, Qin X G 2009 Acta Phys. Sin. 58 S132 (in Chinese) [王浩, 刘国权, 栾军华, 岳景朝, 秦湘阁 2009 58 S132]
[4] Wang H, Liu G Q, Qin X G 2009 Rare Metal Mat. Eng. 38 126 (in Chinese) [王浩, 刘国权, 秦湘阁 2009 稀有金属材料与工程 38 126]
[5] Zheng X P, Zhang P F, Liu J, He D Y, Ma J T 2004 Acta Phys. Sin. 53 2687 (in Chinese) [郑小平, 张佩峰, 刘军, 贺德衍, 马健泰 2004 53 2687]
[6] Zheng X P, Zhang P F 2010 Comp. Mater. Sci. 50 6
[7] Wang J C, Du G, Wei K L, Zhang X, Liu X Y 2012 Chin. Phys. B 21 117308
[8] Komanduri R, Narulkar R, Raff L M 2004 Philos. Mag. 84 1155
[9] Komanduri R, Raff L M 2002 Phil. Mag. Lett. 82 247
[10] Narulkar R, Raff L M, Komanduri R 2005 Proc. I. Mech. Eng. Part N: J. Nanoeng. Nanosyst. 218 7
[11] Fang F Z, Wu H, Zhou W, Hu X T 2007 J. Mater. Process. Technol. 184 407
[12] Piltz R O, Maclean J R, Clark S J, Ackland G J, Hatton P D, Crain J 1995 Phys. Rev. B 52 4072
[13] Si L N, Guo D, Luo J B 2012 Acta Phys. Sin. 61 168103 (in Chinese) [司丽娜, 郭旦, 雒建斌 2012 61 168103]
Catalog
Metrics
- Abstract views: 5957
- PDF Downloads: 619
- Cited By: 0