-
Since to break the limitation of traditional single anode magnetron injection electron gun can only produce a lower power, this paper, based on an independent research and development of particle simulation software CHIPIC, will take the 110 GHz, 220 GHz coaxial cavity double-beam gyrotron for full three-dimensional numerical simulation study. By theoretical analysis for the initial parameters of the coaxial double-beam electron gun and to optimize the design by CHIPIC, we obtain the high-performance electron beam with the horizontal and vertical velocity ratio of 1.0 and the maximum velocity spread of 5.4%, and use the optimized electron gun to replace the traditional gyrotron emission for numerical simulation of the 110 GHz, 220 GHz gyrotron system, as well as the four-process parallel MPI in computing. Finally we obtain that the double bands are 110 and 220 GHz respectively, a TE02 mode, and the average output power about 70 kW. The efficiency can reach 8.75% for the high performance double-beam gyrotron oscillating tube.
-
Keywords:
- coaxial cavity double-beam gyrotron /
- coaxial double-beam electron gun /
- horizontal and vertical velocity ratio /
- velocity spread
[1] Liu S G 1987 Theory for relativistic electronics (Beijing: Science Press) p203 (in Chinese) [刘盛纲, 1987 相对论电子学 (北京: 科学出版社)第203页]
[2] W. B. Herrmannsfeldt "Electron trajectory program" SLAC Report-226, Stanford Linear Accelerator Center, Stanford, California
[3] Wang C Q 1994 Finite-Difference Time-Domain Method used for Electromagnetic field calculation (Beijing: University of Peking Press) p62 (in Chinese) [王长清 1994 电磁场计算中的时域有限差分法 (北京: 北京大学出版社) 第62页]
[4] Fu W J, Yan Y, Yuan X S 2009 Physics of Plasmas 162 023103
[5] Correa R A, Barroso J J 1993 Int. J. Electron. 74 131
[6] Dong Ai X 2006 D. Dissertation (Chengdu: University of Electronic Science and Teachnology of China) [董爱香 2006 硕士学位论文 (成都: 电子科技大学)]
[7] Lawson W 1988 Plasma Science 16 2
[8] Xia M Z, Liu D G, Yan Y 2013 Acta Phys. Sin. 62 111301 (in Chinese) [夏蒙重, 刘大刚, 鄢扬 2013 62 111301]
[9] David J A, Ives R L, Tran H, Bui T, Read M E 2008 IEEE Trans. Plasma Sci. vol 36 156
[10] Zhao Q, Li H F, Luo Y, Deng X, Yu Shen, Wang L 2004 High Power Laser And Particle Beams 16 764 (in Chinese) [赵青, 李宏福, 罗勇, 邓学, 喻胜, 王丽 2004 强激光与粒子束 16 764]
[11] Wang H J, Li H F, Zhou X L 2000 High Power Laser and Particle Beams, 12 331 (in Chinese) [王华军, 李宏福, 周晓岚 2000 强激光与粒子束 12 331]
[12] Xia M. Z, Liu D. G, Yan Y 2012 High Power Laser and Particle Beams 8 331 (in Chinese) [夏蒙重, 刘大刚, 鄢扬 2012 强激光与粒子束 8 331]
-
[1] Liu S G 1987 Theory for relativistic electronics (Beijing: Science Press) p203 (in Chinese) [刘盛纲, 1987 相对论电子学 (北京: 科学出版社)第203页]
[2] W. B. Herrmannsfeldt "Electron trajectory program" SLAC Report-226, Stanford Linear Accelerator Center, Stanford, California
[3] Wang C Q 1994 Finite-Difference Time-Domain Method used for Electromagnetic field calculation (Beijing: University of Peking Press) p62 (in Chinese) [王长清 1994 电磁场计算中的时域有限差分法 (北京: 北京大学出版社) 第62页]
[4] Fu W J, Yan Y, Yuan X S 2009 Physics of Plasmas 162 023103
[5] Correa R A, Barroso J J 1993 Int. J. Electron. 74 131
[6] Dong Ai X 2006 D. Dissertation (Chengdu: University of Electronic Science and Teachnology of China) [董爱香 2006 硕士学位论文 (成都: 电子科技大学)]
[7] Lawson W 1988 Plasma Science 16 2
[8] Xia M Z, Liu D G, Yan Y 2013 Acta Phys. Sin. 62 111301 (in Chinese) [夏蒙重, 刘大刚, 鄢扬 2013 62 111301]
[9] David J A, Ives R L, Tran H, Bui T, Read M E 2008 IEEE Trans. Plasma Sci. vol 36 156
[10] Zhao Q, Li H F, Luo Y, Deng X, Yu Shen, Wang L 2004 High Power Laser And Particle Beams 16 764 (in Chinese) [赵青, 李宏福, 罗勇, 邓学, 喻胜, 王丽 2004 强激光与粒子束 16 764]
[11] Wang H J, Li H F, Zhou X L 2000 High Power Laser and Particle Beams, 12 331 (in Chinese) [王华军, 李宏福, 周晓岚 2000 强激光与粒子束 12 331]
[12] Xia M. Z, Liu D. G, Yan Y 2012 High Power Laser and Particle Beams 8 331 (in Chinese) [夏蒙重, 刘大刚, 鄢扬 2012 强激光与粒子束 8 331]
Catalog
Metrics
- Abstract views: 6126
- PDF Downloads: 543
- Cited By: 0