搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型缓变倒向场大回旋电子枪

武新慧 李家胤 赵晓云 李天明 胡标

引用本文:
Citation:

一种新型缓变倒向场大回旋电子枪

武新慧, 李家胤, 赵晓云, 李天明, 胡标

A novel large-orbit electron gun with gradually-changing reversal magnetic field

Wu Xin-Hui, Li Jia-Yin, Zhao Xiao-Yun, Li Tian-Ming, Hu Biao
PDF
导出引用
  • 提出了一种新的利用缓变倒向场获得大回旋电子注的设计方法,在分析缓变倒向场中电子的运动规律和引起偏心与速度零散的各种原因的基础上,设计了一支大回旋电子枪.与传统设计思路不同,这种大回旋电子枪既不追求形成薄的管状电子束,又不追求突变的倒向磁场,因而极大降低了制管工艺和结构复杂性;阴极发射带可以位于倒向点前的轴向磁场幅值渐减区域,通过控制各条轨迹起始点的正则角动量差异,并利用多种不利因素的相互抵消作用来减小偏心与速度零散.模拟计算结果与理论分析一致,表明通过微调电磁场使各种不利因素相互抵消可以显著提高大回旋电子
    A novel approach to achieve a large-orbit electron beam is demonstrated using a gradually-changing reversal magnetic field. On the basis of analyzing the general regularities of electron movement and various factors which lead to eccentricity and velocity spread in the gradually-changing reversal magnetic field, we design a large-orbit electron gun. Different from the traditional three-step method, our design does not pursuit the formation of thin tubular electron beam and the utilization of mutation reversal magnetic field, which reduces the difficulties in structure complexity and tube-making process. In addition, the cathode emission band can be placed in the axial magnetic field before the magnetic reversal point where its magnitude decreases gradually, by controlling the angular momentum difference between every trajectory starting points and using the offset effect of various unfavorable factors to reduce eccentricity and velocity spread. The simulation results are consistent with the theoretical analyses, which shows that the beam quality can be improved remarkably by fine-tuning electromagnetic fields, confirms that the efficiency and the applicability of the adjusting method we proposed, and provides a new technical way to obtain a high-quality large-orbit electron beam for high-efficiency large-orbit millimeter-wave devices.
    • 基金项目: 国家自然科学基金(批准号:60971035)资助的课题.
    [1]

    Yokoo K, Suzuki T, Razeghi M, Sato N, Ono S 1988 Int. J. Electron. 65 645

    [2]

    Ishihara T, Tadano H, Shimawaki H, Sagae K, Sato N, Yokoo K 1996 IEEE Trans. Electron Dev. 43 827

    [3]
    [4]
    [5]

    Ishihara T, Sagae K, Sato N, Shimawaki H, Yokoo K 1999 IEEE Trans. Electron Dev. 46 798

    [6]

    McDermott D B, Hirata Y, Dressman L J, Gallagher D A, Luhmann N C 2000 IEEE Trans. Plasma Sci. 28 953

    [7]
    [8]

    Harriet S B, McDermott D B, Gallagher D A, Luhmann N C 2002 IEEE Trans. Plasma Sci. 30 909

    [9]
    [10]
    [11]

    Lau Y Y, Barnett L R 1982 Int. J. Electron. 53 693

    [12]
    [13]

    Sabchevski S, Idehara T, Glyavin M, Mitsudo S, Ogawa I, Ohashi K, Kobayashi H 2001 Vacuum 62 133

    [14]

    Lawson W, Destler W W, Fernandez A 1996 IEEE Trans. Electron Dev. 43 1021

    [15]
    [16]

    Idehara T, Ogawa I, Mitsudo S, Iwata Y, Watanabe S, Itakura Y, Ohashi K, Kobayashi H, Yokoyama T, Zapevalov V, Glyavin M, Kuftin A, Malygin O, Sabchevski S 2005 Vacuum 77 539

    [17]
    [18]

    Kulagin O P, Yeryomka V D 2002 IEEE Trans. Plasma Sci. 30 2107

    [19]
    [20]
    [21]

    Yu S, Li H F, Xie Z L, Luo Y 2000 Acta Phys. Sin. 49 2455 (in Chinese)[喻 胜、 李宏福、 谢仲怜、 罗 勇 2000 49 2455]

    [22]
    [23]

    Yu S, Li H F, Xie Z L, Luo Y 2001 Acta Phys. Sin. 50 1979(in Chinese)[喻 胜、 李宏福、 谢仲怜、 罗 勇 2001 50 1979]

    [24]
    [25]

    Jeon S G, Baik C W, Kim D H, Park G S, Sato N, Yokoo K 2002 Appl. Phys. Lett. 80 3703

    [26]

    Jeon S G, Baik C W, Kim D H, Park G S, Sato N, Yokoo K 2004 Appl. Phys. Lett. 84 1994

    [27]
    [28]

    Sabchevski S, Idehara T, Ogawa I, Glyavin M, Mitsudo S 2000 Int. J. Infrared Millimeter Waves 21 1191

    [29]
    [30]

    Gallagher D A, Barsanti M, Scafuri F, Armstrong C 2000 IEEE Trans. Plasma Sci. 28 695

    [31]
    [32]

    Baird J M, Lawson W 1986 Int. J. Electron. 61 953

    [33]
    [34]
    [35]

    Scheitrum G P, Symons R S, True R B 1989 IEEE IDEM 89 743

    [36]
    [37]

    Rhee M J, Destler W W 1974 Phys. Fluids 17 1574

    [38]

    Destler W W, Rhee M J 1977 Phys. Fluids 20 1582

    [39]
  • [1]

    Yokoo K, Suzuki T, Razeghi M, Sato N, Ono S 1988 Int. J. Electron. 65 645

    [2]

    Ishihara T, Tadano H, Shimawaki H, Sagae K, Sato N, Yokoo K 1996 IEEE Trans. Electron Dev. 43 827

    [3]
    [4]
    [5]

    Ishihara T, Sagae K, Sato N, Shimawaki H, Yokoo K 1999 IEEE Trans. Electron Dev. 46 798

    [6]

    McDermott D B, Hirata Y, Dressman L J, Gallagher D A, Luhmann N C 2000 IEEE Trans. Plasma Sci. 28 953

    [7]
    [8]

    Harriet S B, McDermott D B, Gallagher D A, Luhmann N C 2002 IEEE Trans. Plasma Sci. 30 909

    [9]
    [10]
    [11]

    Lau Y Y, Barnett L R 1982 Int. J. Electron. 53 693

    [12]
    [13]

    Sabchevski S, Idehara T, Glyavin M, Mitsudo S, Ogawa I, Ohashi K, Kobayashi H 2001 Vacuum 62 133

    [14]

    Lawson W, Destler W W, Fernandez A 1996 IEEE Trans. Electron Dev. 43 1021

    [15]
    [16]

    Idehara T, Ogawa I, Mitsudo S, Iwata Y, Watanabe S, Itakura Y, Ohashi K, Kobayashi H, Yokoyama T, Zapevalov V, Glyavin M, Kuftin A, Malygin O, Sabchevski S 2005 Vacuum 77 539

    [17]
    [18]

    Kulagin O P, Yeryomka V D 2002 IEEE Trans. Plasma Sci. 30 2107

    [19]
    [20]
    [21]

    Yu S, Li H F, Xie Z L, Luo Y 2000 Acta Phys. Sin. 49 2455 (in Chinese)[喻 胜、 李宏福、 谢仲怜、 罗 勇 2000 49 2455]

    [22]
    [23]

    Yu S, Li H F, Xie Z L, Luo Y 2001 Acta Phys. Sin. 50 1979(in Chinese)[喻 胜、 李宏福、 谢仲怜、 罗 勇 2001 50 1979]

    [24]
    [25]

    Jeon S G, Baik C W, Kim D H, Park G S, Sato N, Yokoo K 2002 Appl. Phys. Lett. 80 3703

    [26]

    Jeon S G, Baik C W, Kim D H, Park G S, Sato N, Yokoo K 2004 Appl. Phys. Lett. 84 1994

    [27]
    [28]

    Sabchevski S, Idehara T, Ogawa I, Glyavin M, Mitsudo S 2000 Int. J. Infrared Millimeter Waves 21 1191

    [29]
    [30]

    Gallagher D A, Barsanti M, Scafuri F, Armstrong C 2000 IEEE Trans. Plasma Sci. 28 695

    [31]
    [32]

    Baird J M, Lawson W 1986 Int. J. Electron. 61 953

    [33]
    [34]
    [35]

    Scheitrum G P, Symons R S, True R B 1989 IEEE IDEM 89 743

    [36]
    [37]

    Rhee M J, Destler W W 1974 Phys. Fluids 17 1574

    [38]

    Destler W W, Rhee M J 1977 Phys. Fluids 20 1582

    [39]
  • [1] 杨冬, 李中文, 田源, 孙帅帅, 田焕芳, 杨槐馨, 李建奇. 用于超快扫描电子显微镜的光发射电子枪及电子光学模拟.  , 2024, 73(22): 222901. doi: 10.7498/aps.73.20241245
    [2] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力.  , 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [3] 李慧慧, 薛文瑞, 李宁, 杜易达, 李昌勇. 涂覆石墨烯的嵌套偏心空心圆柱的椭圆形电介质波导的模式特性.  , 2022, 71(10): 108101. doi: 10.7498/aps.71.20212321
    [4] 宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福. 大散射角散斑场中有关相位奇异新特性的研究.  , 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [5] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性.  , 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [6] 邓金平, 季小玲, 陆璐. 多色部分相干偏心光束在non-Kolmogorov湍流中的传输.  , 2013, 62(14): 144211. doi: 10.7498/aps.62.144211
    [7] 钟双英, 刘崧, 胡淑娟. 致密双星后牛顿偏心轨道的引力波研究.  , 2013, 62(23): 230401. doi: 10.7498/aps.62.230401
    [8] 夏蒙重, 鄢扬, 刘大刚, 王平, 黄培培, 刘腊群, 王辉辉. 全三维110GHz和220GHz同轴腔双注回旋管数值模拟研究.  , 2013, 62(19): 191301. doi: 10.7498/aps.62.191301
    [9] 夏蒙重, 刘大刚, 鄢扬, 彭凯, 杨超, 刘腊群, 王辉辉. 全三维94 GHz回旋管系统数值模拟研究.  , 2013, 62(11): 111301. doi: 10.7498/aps.62.111301
    [10] 李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声. 栅控电子枪中轮辐栅网截止放大系数的研究.  , 2012, 61(7): 078502. doi: 10.7498/aps.61.078502
    [11] 陈旭霖, 赵青, 刘建卫, 郑灵. 1THz回旋管双阳极磁控注入电子枪的分析及设计.  , 2012, 61(7): 074104. doi: 10.7498/aps.61.074104
    [12] 刘维浩, 张雅鑫, 周俊, 龚森, 刘盛纲. 偏心电子注激励周期加载波导角向非对称模衍射辐射.  , 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [13] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力.  , 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [14] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究.  , 2003, 52(7): 1676-1681. doi: 10.7498/aps.52.1676
    [15] 薄 勇, 王德武, 应纯同. 电子枪加热合金熔池的数值分析.  , 2003, 52(4): 883-889. doi: 10.7498/aps.52.883
    [16] 薄勇, 王德武, 应纯同. 冷热坩埚中电子枪加热金属熔池的数值分析.  , 2002, 51(7): 1535-1541. doi: 10.7498/aps.51.1535
    [17] 谢国锋, 王德武, 应纯同. 电子枪功率与束宽对金属原子蒸气特性的影响.  , 2002, 51(3): 584-589. doi: 10.7498/aps.51.584
    [18] 喻胜, 李宏福, 谢仲怜, 罗勇. 8mm波段三次谐波复合腔回旋管的非线性分析.  , 2001, 50(10): 1979-1983. doi: 10.7498/aps.50.1979
    [19] 李壮, 徐承和. 缓变截面波导型回旋共振放大器理论.  , 1983, 32(10): 1247-1254. doi: 10.7498/aps.32.1247
    [20] 武宇. 处理偏心圆柱形气缝导热的一个微扰方法.  , 1964, 20(2): 137-146. doi: 10.7498/aps.20.137
计量
  • 文章访问数:  7309
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-26
  • 修回日期:  2011-02-17
  • 刊出日期:  2011-04-05

/

返回文章
返回
Baidu
map