-
We have investigated the characteristics of gas flow in microchannels under the coupled effects of random surface roughness and velocity slip by the method of computational fluid dynamics. The random surface roughness is modeled by fractal geometry, and the velocity slip on boundary is described by second-order slip law. Results show that the simulated curves obtained by considering both second-order slip law and random surface roughness are in good agreement with experimental data in a range of averaged Knudsen number from 0.025 to 0.59, while the one gained by using Maxwell slip law are in agreement with experimental data in a range of averaged Knudsen number extending up to 0.1. Random surface roughness has an obvious effect on velocity slip: as relative surface roughness increases, velocity slip coefficients decrease. An approximate relation between relative surface roughness and velocity slip coefficients is given according to the results. Last but not least, random surface roughness has a significant effect on the pressure, velocity and Poiseuille number.
-
Keywords:
- random surface roughness /
- second-order slip law /
- fractal /
- microchannel
[1] Barber R W, Emerson D R 2006 Heat. Transfer. Eng. 27 3
[2] Tang G H, Zhang Y H, Emerson D R 2008 Phys. Rev. E 77 046701
[3] Cao B Y, Chen M, Guo Z Y 2006 Inter. J. Eng. Sci. 44 927
[4] Zhang C B, Chen Y P, Deng Z L, Shi M H 2012 Phys. Rev. E 86 016319
[5] Khadem M H, Shams M, Hossainpour S 2009 Int. Commun. Heat. Mass. Transf. 26 69
[6] Lilly T C, Duncan J A, Nothnagel S L, Gimelshein S F, Gimelshein N E, Ketsdever A D, Wysong I J 2007 Phys. Fluid. 19 106101
[7] Zhang C B, Chen Y P, Shi M H, Fu P P, Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese) [张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰 2009 58 7050]
[8] Hao P F, Yao Z H, He F 2007 Acta Phys. Sin. 56 4728 (in Chinese) [郝鹏飞, 姚朝晖, 何枫 2007 56 4728]
[9] Liu C F, Ni Y S 2008 Chin. Phys. B 17 4554
[10] Zhang W M, Meng G, Wei X Y 2012 Microfluid. Nanofluid. 13 845
[11] Maurer J, Tabeling P, Joseph P, Willaime H 2003 Phys. Fluid. 15 2613
[12] Mandelbrot B B 1983 The Fractal Geometry of Nature (New York: Freeman)
[13] Majumdar A, Tien C L 1990 Wear 136 313
[14] Maxwell J C 1879 Phil. Trans. Roy. Soc. 170 231
[15] Yan J, Kun Y, Chung J N 2006 Int. J. Heat Mass Transf. 49 1329
-
[1] Barber R W, Emerson D R 2006 Heat. Transfer. Eng. 27 3
[2] Tang G H, Zhang Y H, Emerson D R 2008 Phys. Rev. E 77 046701
[3] Cao B Y, Chen M, Guo Z Y 2006 Inter. J. Eng. Sci. 44 927
[4] Zhang C B, Chen Y P, Deng Z L, Shi M H 2012 Phys. Rev. E 86 016319
[5] Khadem M H, Shams M, Hossainpour S 2009 Int. Commun. Heat. Mass. Transf. 26 69
[6] Lilly T C, Duncan J A, Nothnagel S L, Gimelshein S F, Gimelshein N E, Ketsdever A D, Wysong I J 2007 Phys. Fluid. 19 106101
[7] Zhang C B, Chen Y P, Shi M H, Fu P P, Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese) [张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰 2009 58 7050]
[8] Hao P F, Yao Z H, He F 2007 Acta Phys. Sin. 56 4728 (in Chinese) [郝鹏飞, 姚朝晖, 何枫 2007 56 4728]
[9] Liu C F, Ni Y S 2008 Chin. Phys. B 17 4554
[10] Zhang W M, Meng G, Wei X Y 2012 Microfluid. Nanofluid. 13 845
[11] Maurer J, Tabeling P, Joseph P, Willaime H 2003 Phys. Fluid. 15 2613
[12] Mandelbrot B B 1983 The Fractal Geometry of Nature (New York: Freeman)
[13] Majumdar A, Tien C L 1990 Wear 136 313
[14] Maxwell J C 1879 Phil. Trans. Roy. Soc. 170 231
[15] Yan J, Kun Y, Chung J N 2006 Int. J. Heat Mass Transf. 49 1329
Catalog
Metrics
- Abstract views: 5876
- PDF Downloads: 424
- Cited By: 0