Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of force gradient symplectic integrators to the circular restricted three-body problem

Chen Yun-Long Wu Xin

Citation:

Application of force gradient symplectic integrators to the circular restricted three-body problem

Chen Yun-Long, Wu Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The kinetic energy of the circular restricted three-body problem in a rotating frame is no longer a standard positive quadratic function of moment, owing to the additional part in the non-inertial rotating frame, which leads to a difficulty in using force gradient symplectic integrators. To address this problem, we show through the calculation of Lie operators that the force gradient operator on the system is still related to the gradient of the gravitational forces from the two main objects rather than that of the resultant force of both the gravitational forces and the non-inertial force exerted by the rotating frame, just as the force gradient operator on the circular restricted three-body problem in an inertial frame. Therefore, it is reasonable to use the gradient symplectic integrators for integrating the circular restricted three-body problem in the rotating frame from a theoretical point of view. Numerical simulations describe that a fourth-order force gradient symplectic method is always greatly superior to the non-gradient Forest-Ruth algorithm in the numerical accuracy, and its optimized version is best. Because of this, the optimized gradient scheme is recommended for calculating chaos indicators, such as Lyapunov exponents of and fast Lyapunov indicators of two nearby trajectories, which is conductive to obtaining a true description of dynamically qualitative properties.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11173012, 11178002) and the Program for Innovative Research Team of Nanchang University, China.
    [1]

    Feng K, Qin M Z 2009 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science and Technology Publishing House)

    [2]

    Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037

    [3]

    Mei L J, Wu X, Liu F Y 2012 Chin. Phys. Lett. 29 050201

    [4]

    Hairer E, Lubich C, Wanner G 1999 Geometric Numerical Integration. (Berlin: Springer)

    [5]

    Chi Y H, Liu X S, Ding P Z 2006 Acta Phys. Sin. 55 6320 (in Chinese) [匙玉华, 刘学深, 丁培柱 2006 55 6320]

    [6]

    Luo X Y, Liu X S, Ding P Z 2007 Acta Phys. Sin. 56 604 (in Chinese) [罗香怡, 刘学深, 丁培柱 2007 56 604]

    [7]

    Liu X S, Wei J Y, Ding P Z 2005 Chin. Phys. 14 231

    [8]

    Bian X B, Qiao H X, Shi T Y 2007 Chin. Phys. 16 1822

    [9]

    Cao Y, Yang K Q 2003 Acta Phys. Sin. 52 1984 (in Chinese) [曹禹, 杨孔庆 2003 52 1984]

    [10]

    Hu W P, Deng Z C 2008 Chin. Phys. B 17 3923

    [11]

    Zhong S Y, Wu X, Liu S Q, Deng X F 2010 Phys. Rev. D 82 124040

    [12]

    Zhong S Y, Wu X 2011 Acta Phys. Sin. 60 090402 (in Chinese) [钟双英, 伍歆 2011 60 090402]

    [13]

    Zhong S Y, Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese) [钟双英, 刘崧 2012 61 120401]

    [14]

    Wu X, Zhong S Y 2011 Gen. Relat. Gravit. 43 2185

    [15]

    Ruth R D 1983 IEEE Tran. Nucl. Sci. 30 2669

    [16]

    Preto M, Saha P 2009 Astrophy. J. 703 1743

    [17]

    Liao X H 1997 Celest. Mech. Dyn. Astron. 66 243

    [18]

    Lubich C, Walther B, Braugmann B 2010 Phys. Rev. D 81 104025

    [19]

    Forest E, Ruth R D 1990 Physica D 43 105

    [20]

    Yoshida H 1990 Phys. Lett. A 150 262

    [21]

    Wisdom J, Holman M 1991 Astron. J. 102 1528

    [22]

    Preto M, Tremaine S 1999 Astron. J. 118 2532

    [23]

    Laskar J, Robutel P 2001 Celest. Mech. Dyn. Astron. 80 39

    [24]

    Wisdom J, Holman M, Touma J 1996 Fields Inst. Commun. 10 217

    [25]

    Chin S A 1997 Phys. Lett. A 75 226

    [26]

    Chin S A, Chen C R 2005 Celest. Mech. Dyn. Astron. 91 301

    [27]

    Chin S A 2007 Phys. Rev. E 75 036701

    [28]

    Xu J, Wu X 2010 Res. Astron. Astrophys. 10 173

    [29]

    Sun W, Wu X, Huang G Q 2011 Res. Astron. Astrophys. 11 353

    [30]

    Li R, Wu X 2010 Science China: Physics, Mechanics & Astronomy 53 1600

    [31]

    Omelyan I P, Mryglod I M, Folk R 2003 Comput. Phys. Commun. 151 272

    [32]

    Li R, Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese) [李荣,伍歆 2010 59 7135]

    [33]

    Wu X, Huang T Y 2003 Phys. Lett. A 313 77

    [34]

    Wu X, Huang T Y, Zhang H 2006 Phys. Rev. D 74 083001

    [35]

    Murray C D, Dermott S F 1999 Solar System Dynamics (Cambridge, UK: Cambridge Univ. Press)

    [36]

    Tancredi G, Sánchez A, Roig F 2001 Astron. J. 121 1171

    [37]

    Froeschlé C, Lega E 2000 Celest. Mech. Dyn. Astron. 78 167

    [38]

    Wu X, Xie Y 2008 Phys. Rev. D 77 103012

    [39]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [40]

    Wang Y Z, Wu X, Zhong S Y 2012 Acta Phys. Sin. 61 160401 (in Chinese) [王玉诏, 伍歆, 钟双英 2012 61 160401]

  • [1]

    Feng K, Qin M Z 2009 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science and Technology Publishing House)

    [2]

    Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037

    [3]

    Mei L J, Wu X, Liu F Y 2012 Chin. Phys. Lett. 29 050201

    [4]

    Hairer E, Lubich C, Wanner G 1999 Geometric Numerical Integration. (Berlin: Springer)

    [5]

    Chi Y H, Liu X S, Ding P Z 2006 Acta Phys. Sin. 55 6320 (in Chinese) [匙玉华, 刘学深, 丁培柱 2006 55 6320]

    [6]

    Luo X Y, Liu X S, Ding P Z 2007 Acta Phys. Sin. 56 604 (in Chinese) [罗香怡, 刘学深, 丁培柱 2007 56 604]

    [7]

    Liu X S, Wei J Y, Ding P Z 2005 Chin. Phys. 14 231

    [8]

    Bian X B, Qiao H X, Shi T Y 2007 Chin. Phys. 16 1822

    [9]

    Cao Y, Yang K Q 2003 Acta Phys. Sin. 52 1984 (in Chinese) [曹禹, 杨孔庆 2003 52 1984]

    [10]

    Hu W P, Deng Z C 2008 Chin. Phys. B 17 3923

    [11]

    Zhong S Y, Wu X, Liu S Q, Deng X F 2010 Phys. Rev. D 82 124040

    [12]

    Zhong S Y, Wu X 2011 Acta Phys. Sin. 60 090402 (in Chinese) [钟双英, 伍歆 2011 60 090402]

    [13]

    Zhong S Y, Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese) [钟双英, 刘崧 2012 61 120401]

    [14]

    Wu X, Zhong S Y 2011 Gen. Relat. Gravit. 43 2185

    [15]

    Ruth R D 1983 IEEE Tran. Nucl. Sci. 30 2669

    [16]

    Preto M, Saha P 2009 Astrophy. J. 703 1743

    [17]

    Liao X H 1997 Celest. Mech. Dyn. Astron. 66 243

    [18]

    Lubich C, Walther B, Braugmann B 2010 Phys. Rev. D 81 104025

    [19]

    Forest E, Ruth R D 1990 Physica D 43 105

    [20]

    Yoshida H 1990 Phys. Lett. A 150 262

    [21]

    Wisdom J, Holman M 1991 Astron. J. 102 1528

    [22]

    Preto M, Tremaine S 1999 Astron. J. 118 2532

    [23]

    Laskar J, Robutel P 2001 Celest. Mech. Dyn. Astron. 80 39

    [24]

    Wisdom J, Holman M, Touma J 1996 Fields Inst. Commun. 10 217

    [25]

    Chin S A 1997 Phys. Lett. A 75 226

    [26]

    Chin S A, Chen C R 2005 Celest. Mech. Dyn. Astron. 91 301

    [27]

    Chin S A 2007 Phys. Rev. E 75 036701

    [28]

    Xu J, Wu X 2010 Res. Astron. Astrophys. 10 173

    [29]

    Sun W, Wu X, Huang G Q 2011 Res. Astron. Astrophys. 11 353

    [30]

    Li R, Wu X 2010 Science China: Physics, Mechanics & Astronomy 53 1600

    [31]

    Omelyan I P, Mryglod I M, Folk R 2003 Comput. Phys. Commun. 151 272

    [32]

    Li R, Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese) [李荣,伍歆 2010 59 7135]

    [33]

    Wu X, Huang T Y 2003 Phys. Lett. A 313 77

    [34]

    Wu X, Huang T Y, Zhang H 2006 Phys. Rev. D 74 083001

    [35]

    Murray C D, Dermott S F 1999 Solar System Dynamics (Cambridge, UK: Cambridge Univ. Press)

    [36]

    Tancredi G, Sánchez A, Roig F 2001 Astron. J. 121 1171

    [37]

    Froeschlé C, Lega E 2000 Celest. Mech. Dyn. Astron. 78 167

    [38]

    Wu X, Xie Y 2008 Phys. Rev. D 77 103012

    [39]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [40]

    Wang Y Z, Wu X, Zhong S Y 2012 Acta Phys. Sin. 61 160401 (in Chinese) [王玉诏, 伍歆, 钟双英 2012 61 160401]

  • [1] Xu Zi-Fei, Miao Wei-Pao, Li Chun, Jin Jiang-Tao, Li Shu-Jun. Nonlinear feature extraction and chaos analysis of flow field. Acta Physica Sinica, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [2] Li Shuang, Li Qian, Li Jiao-Rui. Mechanism for the coexistence phenomenon of random phase suppressing chaos and stochastic resonance in Duffing system. Acta Physica Sinica, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [3] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [4] Li Xian-Rui, Zhu Yan-Li. Analysis of information entropy of DC-DC converter. Acta Physica Sinica, 2014, 63(23): 238401. doi: 10.7498/aps.63.238401
    [5] Wang Guang-Yi, Yuan Fang. Cascade chaos and its dynamic characteristics. Acta Physica Sinica, 2013, 62(2): 020506. doi: 10.7498/aps.62.020506
    [6] Hao Jian-Hong, Sun Na-Yan. The characteristics of the chaotic parameters for a loss type of modified coupled dynamic system. Acta Physica Sinica, 2012, 61(15): 150504. doi: 10.7498/aps.61.150504
    [7] Zhong Shuang-Ying, Wu Xin. Comparison of second-order mixed symplectic integrator between semi-implicit Euler method and implicit midpoint rule. Acta Physica Sinica, 2011, 60(9): 090402. doi: 10.7498/aps.60.090402
    [8] Niu Chao, Li Xi-Hai, Liu Dai-Zhi. Chaotic dynamic characteristics of Z component in geomagnetic variation field. Acta Physica Sinica, 2010, 59(5): 3077-3087. doi: 10.7498/aps.59.3077
    [9] Xu Zhe, Liu Chong-Xin, Yang Tao. Study on a new chaotic system with analysis and circuit experiment. Acta Physica Sinica, 2010, 59(1): 131-139. doi: 10.7498/aps.59.131
    [10] Li Rong, Wu Xin. A symmetric product of two optimal third-order force gradient symplectic algorithms. Acta Physica Sinica, 2010, 59(10): 7135-7143. doi: 10.7498/aps.59.7135
    [11] Liu Yue, Zhang Wei, Feng Xue, Liu Xiao-Ming. Experimental investigation on chaotic behaviors in loss-modulated erbium-doped fiber-ring lasers. Acta Physica Sinica, 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [12] Tang Liang-Rui, Li Jing, Fan Bing, Zhai Ming-Yue. A new three-dimensional chaotic system and its circuit simulation. Acta Physica Sinica, 2009, 58(2): 785-793. doi: 10.7498/aps.58.785
    [13] Liu Hui-Shi, Xin Xiang-Jun, Yin Xiao-Li, Yu Chong-Xiu, Zhang Qi. An optimization scheme for generating of Chebyshev optical chaotic sequence. Acta Physica Sinica, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [14] Zhang Xiao-Dan, Liu Xiang, Zhao Pin-Dong. Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay. Acta Physica Sinica, 2009, 58(7): 4415-4420. doi: 10.7498/aps.58.4415
    [15] Zhang Yong, Guan Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [16] Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li. Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [17] Liu Jin-Hai, Zhang Hua-Guang, Feng Jian. Investigation of chaotic behavior for press time series of oil pipeline. Acta Physica Sinica, 2008, 57(11): 6868-6877. doi: 10.7498/aps.57.6868
    [18] Sheng Li-Yuan, Sun Ke-Hui, Li Chuan-Bing. Study of a discrete chaotic system based on tangent-delay for elliptic reflecting cavity and its properties. Acta Physica Sinica, 2004, 53(9): 2871-2876. doi: 10.7498/aps.53.2871
    [19] Wei Biao-Lin, Luo Xiao-Shu, Wang Bing-Hong, Quan Hong-Jun, Guo Wei, Fu Jin-Jie. . Acta Physica Sinica, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [20] LI GUO-HUI, ZHOU SHI-PING, XU DE-MING, LAI JIAN-WEN. AN OCCASIONAL LINEAR FEEDBACK APPROACH TO CONTROL CHAOS. Acta Physica Sinica, 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
Metrics
  • Abstract views:  6416
  • PDF Downloads:  350
  • Cited By: 0
Publishing process
  • Received Date:  11 January 2013
  • Accepted Date:  27 March 2013
  • Published Online:  05 July 2013

/

返回文章
返回
Baidu
map