-
提出一种考虑两种损耗特性的耦合发电机模型. 与原来的耦合发电机模型相比, 该模型更能反映实际情况. 通过数值计算Lypunov指数谱、分岔图、Poincaré映射等, 分析了系统在各种参数空间的性态变化. 结果显示考虑机械阻尼损耗的耦合发电机模型具有双吸引子, 机械阻尼损耗一方面可以抑制系统混沌, 另一方面却使系统在参数空间具有更复杂的混沌特性, 表征这两种损耗特性的参数对系统动力学行为都有显著的影响.
-
关键词:
- 耦合发电机系统 /
- 分岔 /
- Lyapunov指数 /
- Poincaré映射
A coupled dynamos model considering two loss characteristics is proposed, which can characterize the practical situation well compared with the previous one. By numerical calculation, the Lyapunov exponential spectrum, bifurcation diagram and Poincaré mapping are given. Then the dynamic characteristics of the parameters space are analyzed. From these results, it can be found that the novel coupled dynamo model with the consideration of mechanical damping loss, has double attractors. The mechanical damping loss can suppress the chaotic occurrence and leads to more complex bifurcation characteristic appearing in the parameter space. The two kinds of the loss characteristic parameters have significant influence on the dynamic behavior of the system.-
Keywords:
- coupled dynamos system /
- bifurcation /
- Lyapunov exponent /
- Poincaré map
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Lorenz E N 1993 The Essence of chaos (Washington: University of Washington Press) p102
[3] Kennedy M P 1993 IEEEE Trans Circ Syst. 40 657
[4] Matian M A, Guemez J 1994 Phys. Rev. Lett. 72 1145
[5] Agiza H N 2002 Chaos Solitons & Fractals 13 341
[6] Agiza H N 2004 Int. J. Modern Phys. C 15 873
[7] Wang X Y, Wu X J 2006 Acta Phys. Sin. 55 5083 (in Chinese) [王兴元, 武相军 2006 55 5083]
[8] Wang X Y, Wu X J 1995 Phys. Rev. Lett. 52 3558
[9] Wu S H, Sun Y, Hao J H 2011 Acta Phys. Sin. 60 010507 (in Chinese) [吴淑花, 孙毅, 郝建红, 许海波 2011 60 010507]
[10] Wang M J, Wang X Y 2010 Acta Phys. Sin. 59 1583 (in Chinese) [王明军, 王兴元 2010 59 1583]
-
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Lorenz E N 1993 The Essence of chaos (Washington: University of Washington Press) p102
[3] Kennedy M P 1993 IEEEE Trans Circ Syst. 40 657
[4] Matian M A, Guemez J 1994 Phys. Rev. Lett. 72 1145
[5] Agiza H N 2002 Chaos Solitons & Fractals 13 341
[6] Agiza H N 2004 Int. J. Modern Phys. C 15 873
[7] Wang X Y, Wu X J 2006 Acta Phys. Sin. 55 5083 (in Chinese) [王兴元, 武相军 2006 55 5083]
[8] Wang X Y, Wu X J 1995 Phys. Rev. Lett. 52 3558
[9] Wu S H, Sun Y, Hao J H 2011 Acta Phys. Sin. 60 010507 (in Chinese) [吴淑花, 孙毅, 郝建红, 许海波 2011 60 010507]
[10] Wang M J, Wang X Y 2010 Acta Phys. Sin. 59 1583 (in Chinese) [王明军, 王兴元 2010 59 1583]
计量
- 文章访问数: 7182
- PDF下载量: 388
- 被引次数: 0