搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半隐Euler法和隐中点法嵌入混合辛积分器的比较

钟双英 伍歆

引用本文:
Citation:

半隐Euler法和隐中点法嵌入混合辛积分器的比较

钟双英, 伍歆

Comparison of second-order mixed symplectic integrator between semi-implicit Euler method and implicit midpoint rule

Zhong Shuang-Ying, Wu Xin
PDF
导出引用
  • 当Hamilton函数分解为可积和不可积两部分时,前者能用分析方法给出解析解,而后者可借助一阶半隐Euler法或二阶隐中点法等数值求解,将这种解析和数值解法组合能构造二阶混合辛积分器.理论分析表明Euler嵌入法的稳定区要小于中点嵌入法的.再分别以圆形限制性三体问题和相对论自旋致密双星后牛顿Hamilton构型为例,详细比较了两嵌入法的性能特点.二者的数值精度、稳定性及计算效率与Hamilton的分解方式和轨道类型有关.就圆形限制性三体问题而言,当Hamilton采用势能和含坐标与动量混合项在内的动能分解
    When a Hamiltonian can be split into integrable and nonintegrable parts, the former part is solved analytically, and the latter one is integrated numerically by means of implicit symplectic integrators such as the first-order semi-implicit Euler method or the second-order implicit midpoint rule. These analytical and numerical solutions are used to construct a second-order mixed symplectic integrator with the semi-implicit Euler method and one with the implicit midpoint rule. A theoretical analysis shows that the Euler mixed integrator is inferior to the midpoint one in the sense of numerical stability. Numerical simulations of the circularly-restricted three-body problem also support this fact. It is further shown through numerical integrations of the post-Newtonian Hamiltonian of spinning compact binaries that the qualities of the Euler mixed integrator and the midpoint mixed method do depend on the type of orbits. Especially for chaotic orbits, the Euler mixed integrator often becomes unstable. In addition, the Euler mixed integrator has an advantage over the midpoint mixed method in computational efficiency, and is almost equivalent to the latter in the numerical accuracy if the two mixed integrators are stable. In spite of this, the midpoint mixed integrator is worth recommending for the study of the dynamics of post-Newtonian Hamiltonians of spinning compact binaries.
    • 基金项目: 国家自然科学基金(批准号:10873007)和南昌大学创新团队项目资助的课题.
    [1]

    Feng K 1986 J. Comput. Math. 4 279

    [2]

    Ruth R D 1983 IEEE Tran. Nucl. Sci. 30 2669

    [3]

    Li R, Wu X 2010 Science China Physics, Mechanics & Astronomy 53 1600

    [4]

    Li R, Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese) [李 荣、伍 歆 2010 59 7135]

    [5]

    Sun W, Wu X, Huang G Q 2011 Res. Astron. Astrophys. 11 (in press)

    [6]

    Chi Y H, Liu X S, Ding P Z 2006 Acta Phys.Sin. 55 6320 (in Chinese) [匙玉华、刘学深、丁培柱 2006 55 6320]

    [7]

    Luo X Y, Liu X S, Ding P Z 2007 Acta Phys.Sin. 56 0604 (in Chinese) [罗香怡、刘学深、丁培柱 2007 56 0604]

    [8]

    Liu X S, Wei J Y, Ding P Z 2005 Chin. Phys. 14 231

    [9]

    Bian X B, Qiao H X, Shi T Y 2007 Chin. Phys. 16 1822

    [10]

    Cao Y, Yang K Q 2003 Acta Phys. Sin. 52 1984(in Chinese)[曹 禹、杨孔庆 2003 52 1985]

    [11]

    Hu W P, Deng Z C 2008 Chin. Phys. B 17 3923

    [12]

    Wisdom J, Holman M 1991 Astron. J. 102 1528

    [13]

    Xu J, Wu X 2010 Res. Astron. Astrophys. 10 173

    [14]

    Zhu J F, Wu X, Ma D Z 2007 Chin. J. Astron. Astrophys. 7 601

    [15]

    Preto M, Saha P 2009 Astrophy. J. 703 1743

    [16]

    Liao X H 1997 Celest. Mech. Dyn. Astron. 66 243

    [17]

    Zhong S Y, Wu X, Liu S Q, Deng X F 2010 Phys. Rev. D 82 124040

    [18]

    Wang Y J, Tang Z M 2001 Acta Phys. Sin. 50 2284(in Chinese)[王永久、唐智明 2001 50 2284]

    [19]

    Kidder L E 1995 Phys. Rev. D 52 821

    [20]

    de Andrade V C, Blanchet L, Faye G 2001 Class. Quantum Grav. 18 753

    [21]

    Faye G, Blanchet L, Buonanno A 2006 Phys. Rev. D 74 104033

    [22]

    Damour T, Jaranowski P, Schafer G 2001 Phys. Rev. D 63 044021

    [23]

    Damour T 2001 Phys. Rev. D 64 124013

    [24]

    Buonanno A, Chen Y, Damour T 2006 Phys. Rev. D 74 104005

    [25]

    Damour T, Jaranowski P, Schafer G 2008 Phys. Rev. D 77 064032

    [26]

    Hergt S, Schafer G 2008 Phys. Rev. D 77 104001

    [27]

    Hergt S, Schafer G 2008 Phys. Rev. D 78 124004

    [28]

    Li C B, Chen S, Zhu Y Q 2009 Acta Phys. Sin. 58 2255(in Chinese)[李春彪、陈 谡、朱炴强 2009 58 2255]

    [29]

    Zhang R X, Yang S P 2009 Acta Phys. Sin. 58 2957(in Chinese)[张若洵、杨世平 2009 58 2957]

    [30]

    Wen S Y, Wang Z, Liu F C 2009 Acta Phys. Sin. 58 3753(in Chinese)[温淑焕、王 哲、刘福才 2009 58 3753]

    [31]

    Li G L, Chen XY 2010 Chin. Phys. B 19 030507

    [32]

    Liu C X, Liu L 2009 Chin. Phys. B 18 2188

    [33]

    Gu Q L, Gao T G 2009 Chin. Phys. B 18 84

    [34]

    Levin J 2000 Phys. Rev. Lett. 84 3515

    [35]

    Konigsdorffer C, Gopakumar A 2005 Phys. Rev. D 71 024039

    [36]

    Gopakumar A, Konigsdorffer C 2005 Phys. Rev. D 72 121501

    [37]

    Levin J 2006 Phys. Rev. D 74 124027

    [38]

    Schnittman J D, Rasio F A 2001 Phys. Rev. Lett. 87 121101

    [39]

    Cornish N J, Levin J 2002 Phys. Rev. Lett. 89 179001

    [40]

    Wu X, Xie Y 2007 Phys. Rev. D 76, 124004

    [41]

    Sun K H, Liu X, Zhu C X 2010 Chin. Phys. B 19 110510

    [42]

    Wu X, Xie Y 2008 Phys. Rev. D 77 103012

    [43]

    Lubich C, Walther B, Braugmann B 2010 Phys. Rev. D 81 104025

    [44]

    Wu X, Xie Y 2010 Phys. Rev. D 81 084045

    [45]

    Liu F Y, Wu X, Lu B K 2007 Chinese Astorn. Astrophys. 31 172

    [46]

    Murray C D, Dermott S F 1999 Solar System Dynamics. Cambridge Univ. Press, Cambridge, UK.

    [47]

    Zhao H J, Du M L 2007 Acta Phys.Sin. 56 3827 (in Chinese)[赵海军、杜孟利 2007 56 3827]

    [48]

    Hartl M D, Buonanno A 2005 Phys. Rev. D 71 024027

    [49]

    Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037

    [50]

    Wang Y, Wu X 2011 Class. Quantum Grav. 28 in press

    [51]

    Wu X, Huang T Y, Zhang H 2006 Phys. Rev. D 74 083001

  • [1]

    Feng K 1986 J. Comput. Math. 4 279

    [2]

    Ruth R D 1983 IEEE Tran. Nucl. Sci. 30 2669

    [3]

    Li R, Wu X 2010 Science China Physics, Mechanics & Astronomy 53 1600

    [4]

    Li R, Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese) [李 荣、伍 歆 2010 59 7135]

    [5]

    Sun W, Wu X, Huang G Q 2011 Res. Astron. Astrophys. 11 (in press)

    [6]

    Chi Y H, Liu X S, Ding P Z 2006 Acta Phys.Sin. 55 6320 (in Chinese) [匙玉华、刘学深、丁培柱 2006 55 6320]

    [7]

    Luo X Y, Liu X S, Ding P Z 2007 Acta Phys.Sin. 56 0604 (in Chinese) [罗香怡、刘学深、丁培柱 2007 56 0604]

    [8]

    Liu X S, Wei J Y, Ding P Z 2005 Chin. Phys. 14 231

    [9]

    Bian X B, Qiao H X, Shi T Y 2007 Chin. Phys. 16 1822

    [10]

    Cao Y, Yang K Q 2003 Acta Phys. Sin. 52 1984(in Chinese)[曹 禹、杨孔庆 2003 52 1985]

    [11]

    Hu W P, Deng Z C 2008 Chin. Phys. B 17 3923

    [12]

    Wisdom J, Holman M 1991 Astron. J. 102 1528

    [13]

    Xu J, Wu X 2010 Res. Astron. Astrophys. 10 173

    [14]

    Zhu J F, Wu X, Ma D Z 2007 Chin. J. Astron. Astrophys. 7 601

    [15]

    Preto M, Saha P 2009 Astrophy. J. 703 1743

    [16]

    Liao X H 1997 Celest. Mech. Dyn. Astron. 66 243

    [17]

    Zhong S Y, Wu X, Liu S Q, Deng X F 2010 Phys. Rev. D 82 124040

    [18]

    Wang Y J, Tang Z M 2001 Acta Phys. Sin. 50 2284(in Chinese)[王永久、唐智明 2001 50 2284]

    [19]

    Kidder L E 1995 Phys. Rev. D 52 821

    [20]

    de Andrade V C, Blanchet L, Faye G 2001 Class. Quantum Grav. 18 753

    [21]

    Faye G, Blanchet L, Buonanno A 2006 Phys. Rev. D 74 104033

    [22]

    Damour T, Jaranowski P, Schafer G 2001 Phys. Rev. D 63 044021

    [23]

    Damour T 2001 Phys. Rev. D 64 124013

    [24]

    Buonanno A, Chen Y, Damour T 2006 Phys. Rev. D 74 104005

    [25]

    Damour T, Jaranowski P, Schafer G 2008 Phys. Rev. D 77 064032

    [26]

    Hergt S, Schafer G 2008 Phys. Rev. D 77 104001

    [27]

    Hergt S, Schafer G 2008 Phys. Rev. D 78 124004

    [28]

    Li C B, Chen S, Zhu Y Q 2009 Acta Phys. Sin. 58 2255(in Chinese)[李春彪、陈 谡、朱炴强 2009 58 2255]

    [29]

    Zhang R X, Yang S P 2009 Acta Phys. Sin. 58 2957(in Chinese)[张若洵、杨世平 2009 58 2957]

    [30]

    Wen S Y, Wang Z, Liu F C 2009 Acta Phys. Sin. 58 3753(in Chinese)[温淑焕、王 哲、刘福才 2009 58 3753]

    [31]

    Li G L, Chen XY 2010 Chin. Phys. B 19 030507

    [32]

    Liu C X, Liu L 2009 Chin. Phys. B 18 2188

    [33]

    Gu Q L, Gao T G 2009 Chin. Phys. B 18 84

    [34]

    Levin J 2000 Phys. Rev. Lett. 84 3515

    [35]

    Konigsdorffer C, Gopakumar A 2005 Phys. Rev. D 71 024039

    [36]

    Gopakumar A, Konigsdorffer C 2005 Phys. Rev. D 72 121501

    [37]

    Levin J 2006 Phys. Rev. D 74 124027

    [38]

    Schnittman J D, Rasio F A 2001 Phys. Rev. Lett. 87 121101

    [39]

    Cornish N J, Levin J 2002 Phys. Rev. Lett. 89 179001

    [40]

    Wu X, Xie Y 2007 Phys. Rev. D 76, 124004

    [41]

    Sun K H, Liu X, Zhu C X 2010 Chin. Phys. B 19 110510

    [42]

    Wu X, Xie Y 2008 Phys. Rev. D 77 103012

    [43]

    Lubich C, Walther B, Braugmann B 2010 Phys. Rev. D 81 104025

    [44]

    Wu X, Xie Y 2010 Phys. Rev. D 81 084045

    [45]

    Liu F Y, Wu X, Lu B K 2007 Chinese Astorn. Astrophys. 31 172

    [46]

    Murray C D, Dermott S F 1999 Solar System Dynamics. Cambridge Univ. Press, Cambridge, UK.

    [47]

    Zhao H J, Du M L 2007 Acta Phys.Sin. 56 3827 (in Chinese)[赵海军、杜孟利 2007 56 3827]

    [48]

    Hartl M D, Buonanno A 2005 Phys. Rev. D 71 024027

    [49]

    Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037

    [50]

    Wang Y, Wu X 2011 Class. Quantum Grav. 28 in press

    [51]

    Wu X, Huang T Y, Zhang H 2006 Phys. Rev. D 74 083001

  • [1] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性.  , 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [2] 陈云龙, 伍歆. 力梯度辛方法在圆型限制性三体问题中的应用.  , 2013, 62(14): 140501. doi: 10.7498/aps.62.140501
    [3] 王玉诏, 伍歆, 钟双英. 旋转致密双星的引力波特征.  , 2012, 61(16): 160401. doi: 10.7498/aps.61.160401
    [4] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究.  , 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [5] 史正平. 简易混沌振荡器的混沌特性及其反馈控制电路的设计.  , 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [6] 李荣, 伍歆. 两个三阶最优化力梯度辛积分器的对称组合.  , 2010, 59(10): 7135-7143. doi: 10.7498/aps.59.7135
    [7] 赵严峰. 双反馈半导体激光器的混沌特性研究.  , 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [8] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定.  , 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [9] 杜杰, 曹一家, 刘志坚, 徐立中, 江全元, 郭创新, 陆金桂. 混沌时间序列的局域高阶Volterra滤波器多步预测模型.  , 2009, 58(9): 5997-6005. doi: 10.7498/aps.58.5997
    [10] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究.  , 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [11] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究.  , 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [12] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究.  , 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [13] 孟 娟, 王兴元. 基于非线性观测器的一类混沌系统的相同步.  , 2007, 56(9): 5142-5148. doi: 10.7498/aps.56.5142
    [14] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化.  , 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [15] 颜森林. 注入半导体激光器混沌相位周期控制方法研究.  , 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [16] 姚利娜, 高金峰, 廖旎焕. 实现混沌系统同步的非线性状态观测器方法.  , 2006, 55(1): 35-41. doi: 10.7498/aps.55.35
    [17] 颜森林, 汪胜前. 激光混沌串联同步以及混沌中继器系统理论研究.  , 2006, 55(4): 1687-1695. doi: 10.7498/aps.55.1687
    [18] 颜森林. 量子阱激光器混沌相位控制同步以及编码研究.  , 2005, 54(3): 1098-1104. doi: 10.7498/aps.54.1098
    [19] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制.  , 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [20] 李国辉. 基于观测器的混沌广义同步解析设计.  , 2004, 53(4): 999-1002. doi: 10.7498/aps.53.999
计量
  • 文章访问数:  9424
  • PDF下载量:  788
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-25
  • 修回日期:  2010-12-21
  • 刊出日期:  2011-09-15

/

返回文章
返回
Baidu
map