-
A possibility of new structure for high harmonics high gain (HGHG) free electron laser is proposed, in which the structure of the optical klystron is placed in the resonance cavity to form the HGHG modulator. This particular modulator can remove seed laser of the conventional HGHG. Such a scheme will be beneficial to high-repetition-rate, full coherence and narrow bandwidth. Detail simulation by GINGER was given, showing that up to 12 harmonics the output of the oscillator is still very well.
-
Keywords:
- lasers /
- optic klystron /
- HGHG /
- oscillator
[1] Richard F, Schneider J R, Trines D, Wagner A, TESLA Technical Design Report, 2001
[2] Robinson A L, Plummer B, Science and Technology of Future Light Sources, 2008
[3] Arthur J, Bane K, Bharadwaj V, Linac Coherent Light Source Design Study Report, 1998
[4] Huang Z R, Lindau I 2012 Nat. Photonics 6 505
[5] Allaria E, De Ninno G 2007 Phys. Rev. Lett. 99 014801
[6] Bartolini R 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 657 177
[7] Zahedian Maryam, Maraghechi B, Rouhani M H 2012 Chin. Phys. B 21 034101
[8] Saviz S, Aghamir F M, Mehdian H, Ghorannevis M 2011 Chin. Phys. B 20 074101
[9] Meng X Z, Wang M H, Ren Z M 2011 Chin. Phys. B 20 050702
[10] Lin X L, Zhang J B, Lu Y, Luo F, Lu S L, Yu T M, Dai Z M 2010 Chin. Phys. Lett. 27 044101
[11] Kim S H 2009 Chin. Phys. Lett. 26 054101
[12] Kim S H 2009 Chin. Phys. Lett. 26 011201
[13] Kondratenko A, Saldin E 1980 Part. Accel. 10 207
[14] Bonifacio R, Pellegrini C, Narducci L M 1984 Opt. Commun 50 373
[15] Wu J, Yu L H 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 475 104
[16] Yu L H, Babzien M, Ben Zvi I, DiMauro L F, Doyuran A, Graves W, Johnson E, Krinsky S, Malone R, Pogorelsky I, Skaritka J, Rakowsky G, Solomon L, Wang X J, Woodle M, Yakimenko V, Biedron S G, Galayda J N, Gluskin E, Jagger J, Sajaev V, Vasserman I 2000 Science 289 932
[17] Stupakov G 2009 Phys. Rev. Lett. 102 074801
[18] Xiang D, Stupakov G 2009 Phys. Rev. Spec. Top-AC 12 030702
[19] Bartolini R, Dattoli G, Giannessi L, Ottaviani P L 2004 Opt. Commun 230 205
[20] Fawley W M, A User Mannual for GINGER and its Post-Processor XPLOTGIN, Report LBNL-49625
-
[1] Richard F, Schneider J R, Trines D, Wagner A, TESLA Technical Design Report, 2001
[2] Robinson A L, Plummer B, Science and Technology of Future Light Sources, 2008
[3] Arthur J, Bane K, Bharadwaj V, Linac Coherent Light Source Design Study Report, 1998
[4] Huang Z R, Lindau I 2012 Nat. Photonics 6 505
[5] Allaria E, De Ninno G 2007 Phys. Rev. Lett. 99 014801
[6] Bartolini R 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 657 177
[7] Zahedian Maryam, Maraghechi B, Rouhani M H 2012 Chin. Phys. B 21 034101
[8] Saviz S, Aghamir F M, Mehdian H, Ghorannevis M 2011 Chin. Phys. B 20 074101
[9] Meng X Z, Wang M H, Ren Z M 2011 Chin. Phys. B 20 050702
[10] Lin X L, Zhang J B, Lu Y, Luo F, Lu S L, Yu T M, Dai Z M 2010 Chin. Phys. Lett. 27 044101
[11] Kim S H 2009 Chin. Phys. Lett. 26 054101
[12] Kim S H 2009 Chin. Phys. Lett. 26 011201
[13] Kondratenko A, Saldin E 1980 Part. Accel. 10 207
[14] Bonifacio R, Pellegrini C, Narducci L M 1984 Opt. Commun 50 373
[15] Wu J, Yu L H 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 475 104
[16] Yu L H, Babzien M, Ben Zvi I, DiMauro L F, Doyuran A, Graves W, Johnson E, Krinsky S, Malone R, Pogorelsky I, Skaritka J, Rakowsky G, Solomon L, Wang X J, Woodle M, Yakimenko V, Biedron S G, Galayda J N, Gluskin E, Jagger J, Sajaev V, Vasserman I 2000 Science 289 932
[17] Stupakov G 2009 Phys. Rev. Lett. 102 074801
[18] Xiang D, Stupakov G 2009 Phys. Rev. Spec. Top-AC 12 030702
[19] Bartolini R, Dattoli G, Giannessi L, Ottaviani P L 2004 Opt. Commun 230 205
[20] Fawley W M, A User Mannual for GINGER and its Post-Processor XPLOTGIN, Report LBNL-49625
Catalog
Metrics
- Abstract views: 7006
- PDF Downloads: 409
- Cited By: 0