-
The optimum valence bond scheme is a new theoretical method in generating the initial geometric configurations in molecular dynamics simulations of cluster systems. We will present the application of such a new method to the prediction of nano-structures and the study of matter properties, especially for the low-dimensional nano-structures, such as clusters and nano wires. The optimum valence bond scheme uses the atomic geometry of structures and the space distribution of the valence electrons (mainly the molecular orbitals near the Fermi levels, i.e., the generalized frontier orbitals) to determine the possible stable geometric configurations of nano-structures. Silicon clusters are used to demonstrate the features of the optimum valence bond scheme. Metallic clusters such as those of lithium, sodium, beryllium and magnesium are used as examples to illustrate the application of the scheme to the prediction of structures and the studies of the evolution of the material properties with the sizes of clusters. We will use the adsorption process of lithium ion and MoS nano wire to illustrate the application of the optimum valence bond scheme in the studies of the ionic conduction mechanism of the energy storage materials. We will finish the paper by summarizing the direction for further development of the optimum valence bond scheme.
-
Keywords:
- optimum valence bond scheme /
- cluster /
- nano-structure /
- ionic conduction
[1] Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471
[2] Ohno K, Esfarjani K, Kawazoe Y 1999 Computational Materials Science (Berlin: Springer)
[3] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[4] Wales D J 2003 Energy Landscapes (Cambridge: Cambridge University Press)
[5] Deaven D M, Ho K M 1995 Phys. Rev. Lett. 75 288
[6] Kresse G, Hafner J 2000 Surface Science 459 287
[7] Xiang Y, Sun D Y, Gong X G 2000 J. Phys. Chem. A 104 2746
[8] Yuan Z, He C L, Wang X L, Liu H T, Li J M 2005 Acta Phys. Sin. 54 628 (in Chinese) [袁喆, 何春龙, 王晓路, 刘海涛, 李家明 2005 54 628]
[9] Shen X Y, Xu Y G, He C L, Liu H T, Li J M 2005 Eur. Phys. J. D 34 109
[10] He C L, Yuan Z, Shen X Y, Xu Y G, Li J M 2006 Acta Phys. Sin. 55 162 (in Chinese) [何春龙, 袁喆, 申旭阳, 许雅歌, 李家明 2006 55 162]
[11] Fukui K 1985 Chemical reaction and electronic orbit, Translated by Li R S (Beijing: Science Press) (in Chinese) [福井谦一 1985 化学反应与电子轨道, 李荣森译 (北京: 科学出版社)]
[12] Plieth W 2008 Electrochemistry for Materials Science (Holland: Elsevier Inc.)
[13] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nature Materials 10 682
[14] Kohn W 1999 Rev. Mod. Phys. 71 1253
[15] Bloch F 1928 Z. Physik 52 555
[16] Hellmann H 1935 Phys. Rev. 56 340
[17] Su C R, Li J M 2002 Science in China A 45 906
[18] Jahn, H A, Teller E 1937 Proc. Roy. Soc. A 161 220
[19] Renner R 1934 Z. Physik 92 172
[20] Herzberg G, Teller E 1933 Z. Physik Chem. Leipzig B 21 410
[21] Frisch M J, Trucks G W, Schlegel H B 2003 Gaussian03 Revision B05 (Pittsburgh: Gaussian Inc.)
[22] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[24] Becke A D 1993 J. Chem. Phys. 98 5648
[25] Lee C, Yang W T, Parr R G 1988 Phys. Rev. B 37 785
[26] Lide D R 1998 CRC Handbook of Chemistry and Physics (79th Edition) (New York: Chemical Rubber Publishing Company)
[27] Kittel C 2005 Introduction to solid state physics (8th Edition) (New York: John Wiley and Sons Ltd.)
[28] Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739
[29] Chen X B, He J H, Srivastava D, Li J 2012 Appl. Phys. Lett. 100 263901
[30] Bian X J, Zhu J, Liao L, Scanlon M D, Ge P Y, Ji C, Girault H H, Liu B H 2012 Electrochemistry Communications 22 128
[31] Fang X P, Hua C X, Guo X W, Hu Y S, Wang Z X, Gao X P, Wu F, Wang J Z, Chen L Q 2012 Electrochimica Acta 81 155
[32] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology 6 147
[33] Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[34] Wannier G H 1937 Phys. Rev. 52 191
[35] Smirnov V P, Evarestov R A, Usvyat D E 2002 International Journal of Quantum Chemistry 88 642
[36] Evarestov R A, Smirnov V P, Usvyat D E 2005 Theor. Chem. Acc. 114 19
[37] Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847
[38] Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685
-
[1] Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471
[2] Ohno K, Esfarjani K, Kawazoe Y 1999 Computational Materials Science (Berlin: Springer)
[3] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[4] Wales D J 2003 Energy Landscapes (Cambridge: Cambridge University Press)
[5] Deaven D M, Ho K M 1995 Phys. Rev. Lett. 75 288
[6] Kresse G, Hafner J 2000 Surface Science 459 287
[7] Xiang Y, Sun D Y, Gong X G 2000 J. Phys. Chem. A 104 2746
[8] Yuan Z, He C L, Wang X L, Liu H T, Li J M 2005 Acta Phys. Sin. 54 628 (in Chinese) [袁喆, 何春龙, 王晓路, 刘海涛, 李家明 2005 54 628]
[9] Shen X Y, Xu Y G, He C L, Liu H T, Li J M 2005 Eur. Phys. J. D 34 109
[10] He C L, Yuan Z, Shen X Y, Xu Y G, Li J M 2006 Acta Phys. Sin. 55 162 (in Chinese) [何春龙, 袁喆, 申旭阳, 许雅歌, 李家明 2006 55 162]
[11] Fukui K 1985 Chemical reaction and electronic orbit, Translated by Li R S (Beijing: Science Press) (in Chinese) [福井谦一 1985 化学反应与电子轨道, 李荣森译 (北京: 科学出版社)]
[12] Plieth W 2008 Electrochemistry for Materials Science (Holland: Elsevier Inc.)
[13] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nature Materials 10 682
[14] Kohn W 1999 Rev. Mod. Phys. 71 1253
[15] Bloch F 1928 Z. Physik 52 555
[16] Hellmann H 1935 Phys. Rev. 56 340
[17] Su C R, Li J M 2002 Science in China A 45 906
[18] Jahn, H A, Teller E 1937 Proc. Roy. Soc. A 161 220
[19] Renner R 1934 Z. Physik 92 172
[20] Herzberg G, Teller E 1933 Z. Physik Chem. Leipzig B 21 410
[21] Frisch M J, Trucks G W, Schlegel H B 2003 Gaussian03 Revision B05 (Pittsburgh: Gaussian Inc.)
[22] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[24] Becke A D 1993 J. Chem. Phys. 98 5648
[25] Lee C, Yang W T, Parr R G 1988 Phys. Rev. B 37 785
[26] Lide D R 1998 CRC Handbook of Chemistry and Physics (79th Edition) (New York: Chemical Rubber Publishing Company)
[27] Kittel C 2005 Introduction to solid state physics (8th Edition) (New York: John Wiley and Sons Ltd.)
[28] Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739
[29] Chen X B, He J H, Srivastava D, Li J 2012 Appl. Phys. Lett. 100 263901
[30] Bian X J, Zhu J, Liao L, Scanlon M D, Ge P Y, Ji C, Girault H H, Liu B H 2012 Electrochemistry Communications 22 128
[31] Fang X P, Hua C X, Guo X W, Hu Y S, Wang Z X, Gao X P, Wu F, Wang J Z, Chen L Q 2012 Electrochimica Acta 81 155
[32] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology 6 147
[33] Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[34] Wannier G H 1937 Phys. Rev. 52 191
[35] Smirnov V P, Evarestov R A, Usvyat D E 2002 International Journal of Quantum Chemistry 88 642
[36] Evarestov R A, Smirnov V P, Usvyat D E 2005 Theor. Chem. Acc. 114 19
[37] Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847
[38] Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685
Catalog
Metrics
- Abstract views: 6338
- PDF Downloads: 435
- Cited By: 0