-
The morphology evolution of NH4Cl equiaxed crystal settling in a falling tube filling with its superheated aqueous solution is studied. The effects of superheating and initial crystal size on settling rate and melting velocity are analyzed. The results show that for a non-spinning equiaxed crystal, it will transform from a "quasi-symmetrical" morphology to "quasi-delta" morphology, and for a spinning equiaxed crystal, it is more likely to sustain its initial "quasi-symmetrical" morphology. By analyzing the drag coefficients of equiaxed crystals settling in the solution at different superheating degrees, it is found that higher superheating leads to a smoother shape of the equiaxed crystal, thus increasing its settling rate. For a large equiaxed crystal, higher complexity in shape and increase in settling velocity will lead to a higher melting velocity. In the settling process of crystal in superheated melt, the solute transport condition on the melting interface is weakened by the gradually reducing the settling velocity, resulting in a relatively steady melting velocity for a certain equiaxed crystal.
-
Keywords:
- equiaxed dendrite /
- dendrite morphology /
- settling velocity /
- melting rate
[1] Zhang G Y, Zhang H, Liu C M, Zhou Y J 2005 Acta Phys. Sin. 54 1771 (in Chinese) [张国英, 张辉, 刘春明, 周永军 2005 54 1771]
[2] Yeh J W, Jong S H, Liu W P 1996 Metall. Mater. Trans. A 27 1933
[3] Biloni H, Chalmers B 1968 J. Mater. Sci. 3 139
[4] Murakami K, Okamoto T 1984 Mater. Sci. Technol. 18 103
[5] Fleming M C 1974 Metall. Mater. Trans. B 5 2121
[6] Ohno A (Translated by Xing J D) 1990 Solidification of Metals: Theory, Practice and Application (Beijing: China Machine Press) pp30-33 (in Chinese) [大野笃美著, 邢建东译 1990 金属的凝固理论、实践及应用 (北京: 机械工业出版社) 第30–33页]
[7] Hu H Q 1999 The Principle of Solidification in Metals (Beijing: China Machine Press) p206 (in Chinese) [胡汉起 1999 金属凝固原理 (北京: 机械工业出版社) 第206页]
[8] Andrew D, Thomas N 2007 J. Cryst. Growth 300 467
[9] Blackmore K A, Beatty K M, Hui M J 1997 J. Cryst. Growth 174 76
[10] Ramani A, Beckermann C 1997 Scripta Mater. 36 633
[11] Hisao E, Yuhko I, Kei S, Manabu T 1995 ISIJ Int. 46 864
[12] Tan F L 2005 Appl. Therm. Eng. 25 2169
[13] Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731
[14] Shi Y F, Xu Q Y , Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 徐庆彦, 柳百成 2011 60 126101 ]
[15] Loth E 2008 Powder Technol. 182 342
[16] Mirihanage W U, Browne D J 2010 Comput. Mater. Sci. 50 260
[17] Cheng N S 2009 Powder Technol. 189 395
[18] Hölzer A, Sommerfeld M 2008 Powder Technol. 184 361
[19] Zhang Q Y, Peng Z, He R, Liu R, Lu Q, Hou M Y 2007 Acta Phys. Sin. 56 4708 (in Chinese) [张权义, 彭政, 何润, 刘锐, 陆坤全, 厚美瑛 2007 56 4708]
[20] Chhabra R P 1995 Powder Technol. 85 83
[21] Beckermann C, de Groh III H C, Weidman P D, Zakhem R, Ahuja S 1993 Metall. Mater. Trans. B 24 749
[22] Zhang Z X, Dong C N 1998 Viscous Fluid Flow ( Beijing: Tsinghua University Press) pp5-8 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学 (北京: 清华大学出版社) 第5–8页]
[23] Badillo A, Ceynar D, Beckermann C 2007 J. Cryst. Growth 309 197
[24] Beckermann C, Wang C Y 1996 Metall. Mater. Trans. A 27 2784
[25] Simões S, Sousa A, Figueiredo M 1996 Int. J. Pharm. 127 283
[26] Badillo A, Ceynar D, Beckermann C 2007 J. Cryst. Growth 309 197
-
[1] Zhang G Y, Zhang H, Liu C M, Zhou Y J 2005 Acta Phys. Sin. 54 1771 (in Chinese) [张国英, 张辉, 刘春明, 周永军 2005 54 1771]
[2] Yeh J W, Jong S H, Liu W P 1996 Metall. Mater. Trans. A 27 1933
[3] Biloni H, Chalmers B 1968 J. Mater. Sci. 3 139
[4] Murakami K, Okamoto T 1984 Mater. Sci. Technol. 18 103
[5] Fleming M C 1974 Metall. Mater. Trans. B 5 2121
[6] Ohno A (Translated by Xing J D) 1990 Solidification of Metals: Theory, Practice and Application (Beijing: China Machine Press) pp30-33 (in Chinese) [大野笃美著, 邢建东译 1990 金属的凝固理论、实践及应用 (北京: 机械工业出版社) 第30–33页]
[7] Hu H Q 1999 The Principle of Solidification in Metals (Beijing: China Machine Press) p206 (in Chinese) [胡汉起 1999 金属凝固原理 (北京: 机械工业出版社) 第206页]
[8] Andrew D, Thomas N 2007 J. Cryst. Growth 300 467
[9] Blackmore K A, Beatty K M, Hui M J 1997 J. Cryst. Growth 174 76
[10] Ramani A, Beckermann C 1997 Scripta Mater. 36 633
[11] Hisao E, Yuhko I, Kei S, Manabu T 1995 ISIJ Int. 46 864
[12] Tan F L 2005 Appl. Therm. Eng. 25 2169
[13] Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731
[14] Shi Y F, Xu Q Y , Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 徐庆彦, 柳百成 2011 60 126101 ]
[15] Loth E 2008 Powder Technol. 182 342
[16] Mirihanage W U, Browne D J 2010 Comput. Mater. Sci. 50 260
[17] Cheng N S 2009 Powder Technol. 189 395
[18] Hölzer A, Sommerfeld M 2008 Powder Technol. 184 361
[19] Zhang Q Y, Peng Z, He R, Liu R, Lu Q, Hou M Y 2007 Acta Phys. Sin. 56 4708 (in Chinese) [张权义, 彭政, 何润, 刘锐, 陆坤全, 厚美瑛 2007 56 4708]
[20] Chhabra R P 1995 Powder Technol. 85 83
[21] Beckermann C, de Groh III H C, Weidman P D, Zakhem R, Ahuja S 1993 Metall. Mater. Trans. B 24 749
[22] Zhang Z X, Dong C N 1998 Viscous Fluid Flow ( Beijing: Tsinghua University Press) pp5-8 (in Chinese) [章梓雄, 董曾南 1998 黏性流体力学 (北京: 清华大学出版社) 第5–8页]
[23] Badillo A, Ceynar D, Beckermann C 2007 J. Cryst. Growth 309 197
[24] Beckermann C, Wang C Y 1996 Metall. Mater. Trans. A 27 2784
[25] Simões S, Sousa A, Figueiredo M 1996 Int. J. Pharm. 127 283
[26] Badillo A, Ceynar D, Beckermann C 2007 J. Cryst. Growth 309 197
Catalog
Metrics
- Abstract views: 5951
- PDF Downloads: 497
- Cited By: 0